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1 Introduction

This document describes the use and methods of a Fortran90 software for
multiple trait estimation of variance components, breeding values and fixed
effects in threshold, linear and censored linear models in animal breeding.
The program is self-contained and quite standard so it should compile almost
everywhere. It has been tested with AIX xlf90, DVF, g95 and NAG f95 for
Linux.

1.1 History

The core of the program is a small multiple trait program by Luis Varona
which we converted into a multiple trait 1-threshold trait program. Af-
terwards, I added many things, including multiple threshold traits, different
models per trait, proper handling of conditional inverted Wishart, permanent
environment, censored traits, generalized inverses, and so on. Evangelina
López de Maturana added several pieces of code here and there, including
the sire models. There are several subroutines taken from Ignacy Misztal’s
BLUPF90 distribution.

2 Functionality

The program computes:

• Posterior distributions for variance components and relevant ratios
(heritabilities, correlations).

• Posterior distributions for breeding values and fixed effects with known
or unknown variance components.

The program handles:

• Any number of continuous traits.

• Several continuous traits, several polychotomous traits and one binary
trait.

• Several binary traits (with some restrictions).

• Theoretically, it can handle several continuous and binary traits at the
same time but this can give some problems.

• Censored continuous traits.
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• Missing values.

• Sire and animal models.

• Simultaneous correlated animal effects (e.g., sire-dam or maternal ef-
fects).

• Several random environmental effects (permanent effect).

• Different design matrices.

• It is possible to test contrasts of fixed or random effects.

The program does not handle:

• Covariates (neither random regression)

• Heterogeneous variances

2.1 Other software

There are other software doing similar tasks but not many. None (up to
my knowledge) can include normal right-censored traits. Van Tassell et al.
MTGSAMTHR can also run threshold models, but is much slower and we had
numerical problems for multiple traits. Sampling of the residual covariance
matrix is an approximation of unknown quality. Same for GIBBS90THR1,
which on the other hand has a more flexible modelling (covariates, etc.).
The exact method by Korsgaard et al. for sampling the residual covariance
is implemented here. I’ve tried to put better output (results of variance com-
ponent estimates and random effects) as well as the BLUP option. Program
is quite fast.

3 Methods

3.1 Gibbs sampling

MCMC and Gibbs sampling methods are used. A good reference for Gibbs
sampling is Sorensen and Gianola’s book (2002). The advantage of the
MCMC and Gibbs sampling is that you can keep the same core (a “stan-
dard” multiple-trait Gibbs sampling) if you manage to integrate the liability
by “data augmentation” (see the book of Tanner “Tools for statistical infer-
ence” for details). Most of the relevant theory is there. Flat priors are used
for fixed effects and variance components, so the univariate estimators are
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equivalent to REML and the multivariate estimators are the VEIL estimators
of Gianola and Foulley.

3.2 Threshold models

The threshold (or probit) models are quite known and well described in
Sorensen and Gianola book. They always consider one or several thresholds
and a liability that, over a given threshold, produces an observed phenotype.
The key idea of the Gibbs sampler for threshold models is to include this
liability as a nuisance parameter and to integrate it out in the Gibbs sampler.
At each iteration, for each polychotomous record (say 0 or 1), a liability is
“generated” below or over the threshold such that the observed value is 0
or 1. To avoid over/underflows, the liability is bounded between -999 and
+999.

For dichotomous traits, for the parameters to be identifiable, a restriction
is set so that residual variance is set to 1 and threshold is set to 0. This
poses problems for multiple binary traits. For polychotomous traits, a single
restriction is enough, namely, the difference between the first and second
threshold is set to 1. This is more convenient computationally.

3.2.1 Restrictions in the residual covariance matrix

For binary traits, the residual variance is set to 1. Therefore, each sample of
the matrix of residual covariances R0 has the following shape:

R0 =


σ2

e11 σe12 · · · σe1n

σe21
. . .

· · ·
σen1 · · · · · · 1


Therefore it is not any longer a standard inverted Wishart distribution, but a
conditional inverted Wishart distribution. This is sampled according to Inge
Riis Korsgaard et al. Genet. Sel. Evol. 35 (2003) p. 159. The problem is
that, when there are several binary traits, the algorithm assumes that they
are uncorrelated at the residual level. If there are 4 traits, the last two binary,
the residual covariance matrix is forced to be:

R0 =


σ2

e11 σe12 σe13 σe14

σe21 σe22 σe23 σe24

σe31 σe32 1 0
σe41 σe42 0 1
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which is very unnatural. This gives also numerical problems. There are
tricks to avoid this problem, but they have to be checked. One is to add an
artificial environmental variance for each record, which will substitute part
of the residual one. This should work for several binary traits. The other is
to let the residual variance free (non identifiable). It usually does not go out
of bounds and correlations and heritabilities are still identifiable. However,
breeding values and fixed effects are not and (if desired) should be reescaled
in each iteration. To run this trick, you need to “cheat” the program telling
him that the binary trait is a 3-categories trait. The idea is by Romdhane
Rekaya and can be found in J. Anim. Sci. Vol. 81, Suppl. 1: 113.

3.3 Censored traits

Censored traits are handled by “integrating” out the conditional distribution
of the censored data. That means that, if we have observed a censored phe-
notype y∗ (say interval between calvings), and we know the effects affecting
this phenotype (say herd and cow), the real, unobserved phenotype yr follows
a truncated normal distribution

f(yr|y∗, herd, cow) ∼ N(cow + herd, σ2)

bounded at y∗, which means that the real phenotype yr can not be less
than the observed one y∗. At each iteration of the Gibbs sampler, yr are
generated according to the values of the effects and the variances. To avoid
over/underflows, yr is also bounded between -999 and +999. The procedure
is also described by Korsgaard. This is “right” censoring (observed values
are less than real ones). “Left” censoring is not included.

3.4 Breeding values

Breeding values are estimated. The output provides mean and standard error
for all traits. They are always estimable because one genetic group is set to
0.

3.5 Fixed effects

The output also provides values for fixed effects (mean and standard errors).
However, these are not estimable unless the model is full rank and they
should not be considered. To test fixed effects, the best is to sample them
and to get contrasts (which are estimable) and their posterior distribution
from this samples. It will be shown in 4.5.9 how to do that.
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4 Use

4.1 Size of the problem

Unfortunately I have not implemented it with allocatable matrices. Therefore
they are allocated at compile time:

module modelo
implicit none
integer :: &
maxrec=1500000,& !this is the number of non-zero elements in the MME
maxeq=41000,& !this is the number of equations
maxfa=14, & !this is the maximum number of effects
nan=40669, & !this is the maximum number of animals
MAXDAT=67000,& !this is the maximum number of data

!(records in the file)
MAXCAR=12, & !this is the maximum number of traits
maxthr=5,& !this is the maximum number of thresholds
maxper=3,& !this is the maximum number of permanent effects
maxefani=2,& ! this is the maximum number of animal effects

...
end module modelo

There are alerts in the program if parameters are out of bounds. Change
them by hand and recompile. Be careful, if maxcar>12 you need to change
it also in the subroutines for matrix inversion, etc. Just look for maxcar=12
in the source code and change it as appropriate.

4.2 Pedigree file

A pedigree file has to be included. The pedigree file has to be sorted ( a
typical sort pedigree -o pedigree in Unix/Linux is enough).

For animal models, the pedigree is composed of three columns, animal,
sire, dam, in free format (separated by spaces). For unknown ancestors,
genetic groups must be used. It is possible to fit only one genetic group for
all unknown parents and the model is equivalent to a model without genetic
groups.

For sire models, the pedigree file is of the form

sire, sire of sire, maternal grandsire of sire.

No genetic groups are allowed in this case. For unknown parents, a zero
has to be used.
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4.2.1 Renumbering

Animals ID have to be recodified to integer numbers ranging from 1 to the
number of animals (say nanim). The genetic groups must be codified as
nanim+1, nanim+2, etc. The order of the animals in the recodification does
not matter.

4.3 Data file

The order in the data file is important. The data file has to be arranged in
columns separated by spaces, and in the following order:

fixed effects,

random environmental effects,

animal genetic effects,

continuous traits,

polychotomous traits,

binary traits

The only mandatory columns in the data file are the animal genetic effect
and at least one trait.

This is an example of a data file with 4 fixed effects, an animal effect, a
continous and a binary trait.

legarra@cluster:~/TM$ head datoskk
4 18 722 6 1101 462.5423 2.0000
3 17 81 4 1102 290.9461 1.0000
1 20 606 3 1103 344.5742 2.0000
2 3 31 7 1104 363.5641 1.0000

10 14 420 2 1105 400.2891 2.0000
7 12 54 8 1106 337.3424 1.0000
2 2 537 1 1107 387.7675 2.0000
5 19 345 4 1108 443.7464 1.0000
9 19 80 7 1109 367.4686 1.0000
7 16 678 5 1110 482.7182 1.0000

4.3.1 Renumbering

All effects have to be renumbered from 1 to the number of levels.

4.3.2 Codifying of binary and polychotomous traits

Binary traits have to be codified as 1 or 2. For example 1=non pregnancy,
2=pregnancy. The 0 value is reserved to missing values. Polychotomus traits
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have to be codified as 1, 2, 3 . . . . For example, calving ease is codified as
1=no assistance, 2=slight assistance, 3=difficult, 4=very difficult.

4.3.3 Codifying of censored traits

A censored value is observed as a lower bound for the real value. For example,
a cow was not pregnant 105 days after previous calving and then was sold.
The lower value for days open is 105, but the real value will be higher than
that (as explained previously, section 3.3). To inform the software about it,
censored recordings are codified as negative numbers: -105 in this case.

4.3.4 Missing values

Missing values are codified as 0 (actually, any number between -0.01 and
0.01) and included in the analysis by “data augmentation” also. If you have
non random missingness (a trait is observed if the other is not observed, say
litter size and fertility) then the data augmentation theory does not work
well.

4.4 Parameter file

The program is driven by a parameter file with titles and comments. These
are skipped by its position, therefore one has to be very careful when writing
it. This is an example of the parameter file with 4 fixed effects.

Data file
datoskk
Pedigree file
geneakk
Model
animal
5 Number of effects (including animal)
1 Number of genetic groups
2 Number of traits
1 Number of threshold traits
2 Categories for the threshold traits
0 Number of random environmental effects
1 Number of animal effects
10 20 100 10 1000 Levels for each effect (do not include genetic group)

1 1 1 1 1 Model for trait 1
1 1 1 1 1 Model for trait 2 ... repeat as many lines as traits

Task
VCE
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Total number of iterations
100000
Burn-in (discarded only in the results and solutions file)
30000
Thin interval (samples are taken every...)
100
Genetic variance
1 0
0 1
Permanent (keep always this title)
Residual
1 0
0 1

4.5 Variations

4.5.1 Number of iterations and burn-in

The number of iterations has to be set a priori, but one must not wait forever.
Prudent guesses are (to my experience):

1. For continous traits, 50000 iterations give a good guess and 100000 to
200000 are good enough.

2. For complex models (threshold models, maternal effects, etc) 300000
to 500000 can be enough.

Then I usually discard about 1/5 of the iterations, but this can be done using
a post-gibbs software. For the thin interval, I change it to have 1000 or 5000
samples (more are hard to handle in the post-gibbs analysis and not much
informative). The software prints in screen one sample every thin iterations.
From this, the total running time can be calculated. If it is too much, just
stop the program and change it.

4.5.2 Sire models

Write sire instead of animal; verify that your genealogy is in
sire-sire of sire-maternal grandsire form; set the number of genetic
groups to 0.

4.5.3 Several threshold traits

For example, 1 trait with 5 categories and 1 trait with 2 categories.
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2 Number of traits

2 Number of threshold traits

5 2 Categories for the threshold traits

4.5.4 Permanent environment

It is possible to include as many permanent environmental effects as desired.
In the same example, if the 4th effect is random:

1 Number of random environmental effects

...

Genetic variance

1 0

0 1

Permanent (keep always this title)

permanent 1

1000 0

0 1

Residual

1 0

0 1

Note that permanent 1 and a corresponding matrix has to be added for
each random environmental effect, i.e., if there are two:

Permanent (keep always this title)

permanent 1

1000 0

0 1

permanent 2

100 0

0 10

4.5.5 Different models per trait

Say that 1st trait is affected by the 2nd effect only (not even the animal
effect!). The program sets those effects to zero. This works for any trait/effect
combination, including random and genetic effects.

10 20 100 10 1000 Levels for each effect

0 1 0 0 0 Model for trait 1
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1 1 1 1 1 Model for trait 2 ...

4.5.6 Variance components or breeding values

We can estimate genetic parameters as shown, or we can estimate breeding
values with fixed variance components (BLUP) if use the word BLUP instead
of VCE. Evangelina López de Maturana uses this option to get breeding values
of calving ease in dairy cattle.

4.5.7 Covariance matrices

The covariance matrices which are included at the parameter file are used
as known if we are running BLUP. If not, they are used as starting points.
Zeros out of the diagonal do not imply the covariance is set to zero. There
are two options in which they have to be well chosen:

• If we are in a sire model, where σ2
s < 1

4
σ2

e .

• When there are censored traits, the censored value has to be “likely”
under the variance chosen. That is, if we see values of 54, the variance
should not be 1. Without this caution, the program gets stuck trying
to sample “real” records. The best is to use the phenotypic variance or
something similar.

For models with different random matrix per trait, the program handles
them well because it uses generalized Inverted Wishart based on generalized
inverses. For example, for this model,

10 20 100 10 1000 Levels for each effect

0 1 0 0 0 Model for trait 1

1 1 1 1 1 Model for trait 2 ...

the genetic variance is only defined for trait 2. The program produces the
output

0.0000000000000000E+000 0.0000000000000000E+000

0.0000000000000000E+000 35.2971843629242059

therefore σ2
a2,2 = 35.29 and the rest is zero. For multiple animal effects

the genetic variances as organized traits within effects. That is, for a bull-cow
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model for fertility and 2 traits (say, days open and succes at first insemina-
tion), the genetic covariance is:

G0 =

(
A B
B′ D

)
=


σ2

a11 σa12 σa13 σa14

σa21 σ2
a22 σa23 σa24

σa31 σa32 σ2
a33 σa34

σa41 σa42 σa43 σ2
a44


Then A is the matrix of genetic covariances of the effect bull for the traits

days open and success insemination; B is the covariance between bull and
cow effects for those traits; and D is the covariance matrix of the effect cow
for the traits days open and success at first insemination.

4.5.8 Maternal effects or several animal effects

It is possible to include several animal effects (e.g., maternal effects or bull
- cow models in fertility), for example: 2 Number of animal effects. We
will need to put them correctly in the effects part of the model. The same
pedigree is assumed for all of them. Note that sire models for maternal
effects model are also possible, although backtransforming the sire variances
into genetic variances is quite awful (see for example Kriese et al. (1991) J.
Anim. Sci. 69: 478-489). We have done it with good results.

For a model with two traits and maternal effects affecting the second,
this is a parameter file:

Data file

datoskk

Pedigree file

geneakk

Model

animal

5 Number of effects (including animal)

1 Number of genetic groups

2 Number of traits

1 Number of threshold traits

2 Categories for the threshold traits

1 Number of random environmental effects

2 Number of animal effects

100 10 100 1000 1000 Levels for each effect

1 1 0 1 0 Model for trait 1

1 1 1 1 1 Model for trait 2 ...

Task
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VCE

Total number of iterations

100000

Burn-in (discarded only in the results and solutions file)

30000

Thin interval (samples are taken every...)

100

Genetic variance

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

Permanent (keep always this title)

permanent 1

0 0

0 1

Residual

1 0

0 1

Note that this model includes one random environmental effect (dam,
non genetic), a genetic effect for both traits (individual) and a genetic effect
for the second trait (dam). The order of the genetics effects does not matter.
The data file is:

legarra@cluster:~/TM$ head datoskk
60 7 25 111 35 388.2996 1.0000
2 4 69 112 79 390.9525 2.0000

74 9 86 113 96 449.0446 2.0000
72 9 63 114 73 366.7321 1.0000
25 8 68 115 78 453.1664 2.0000
96 10 68 116 78 364.5786 1.0000
70 5 35 117 45 427.0817 1.0000
4 3 81 118 91 323.0574 1.0000

61 10 63 119 73 318.4384 1.0000
95 3 21 120 31 343.8603 1.0000

Note that the dam environmental effect (3rd column) has to be renum-
bered and this number is not the same as the one in the genetic effect (5th
column), because there are less levels. The 4th column is the individual. One
sample of the genetic covariance matrix is:

37.7116 37.3271 0.00000000E+000 -6.75222
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37.3271 65.8084 0.00000000E+000 -4.90055
0.000000E+000 0.00000E+000 0.000000E+000 0.0000E+000
-6.75222 -4.9005 0.0000000E+000 3.37377

which shows that the genetic variance component of the dam for the 1st
trait is zero.

4.5.9 Contrasts

It is hard to think in a standard type of contrasts, so this is the way to
program them. The idea is to print out samples of the vector of solutions to
a file, just as the variance components are. Look for this section:

! ---------
! Contrasts
! ---------

write(20,’(20f15.8)’) b(31:33,1),b(31:33,2)
! -------------
! end contrasts
! -------------

This prints out to unit 20 (’samplesFE.txt’) the solution vector (b) in the
positions 31 to 33 for the 1st and 2nd trait. The positions are obtained by
the sum of the levels of all the previous effects, plus the level we’re interested
in. In the example in 4.4 this corresponds to the 1st to 3rd level of the 3rd
effect. Other way of doing the same is using the vector ifac wich stores the
starting address of each effect. For the same example, this would be:

write(20,’(20f15.8)’) b( (ifac(3)+1):(ifac(3)+3),1), &
b(ifac(3)+1):(ifac(3)+3),2)

If you do not want this output, just comment it (as it is usually).

4.6 Compiling

4.6.1 Cluster

There is a fairly good amount of legacy code and NAG compiler complains
about that. To compile it in the cluster (SAGA) we need the option -dusty

which complains a lot but it works:
legarra@cluster:~/TM$ f95 -dusty -o TM tm.f90 . As this is Gibbs

sampling, speed matters. An optimization option (say, -O4) may run much
faster depending on the compiler.
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4.6.2 DGA2

Two ways to compile:
dga2:/utou/utouale/TM # f90 tm.f90 -o TM,
or change the extension of the program to .f and:
dga2:/utou/utouale/TM # xlf90 tm.f -o TM.

4.7 Run

Just write the name of the executable and answer:

legarra@cluster:~/TM$ ./TM

Parameter file?

simul.par

simul.par

number of traits with var(e) constrained to 1 --> 0

or “echo” it: echo simul.par|./TM

The best is to submit the job (“soumettre un job” dans la documentation
de la SAGA).

4.8 Output

There are prints to the screen every thin iterations. The print gives time
and the present sample of covariance components (in the order: genetic,
environmental, residual). It is interesting to check it because very high or
low variances usually mean convergence problems.

1.469048E+02 -0.74877 0.E+000 0.95498
-0.74877 0.288388 0.E+000 -0.167496
0.E+000 0.E+000 0.E+000 0.E+000
0.95498 -0.16749 0.E+000 0.137198
0.E+000 0.E+000
0.E+000 8.610746E-03
1.941E+03 1.4602
1.4602 6.130E-02
imue 1

05/04/2006 14:21:23
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4.8.1 results.txt

This is a file produced every 100 · thin iterations after burn-in, which gives
the present estimates (mean and standard errors) for variance components
and genetic correlations, heritabilities, etc, after discarding burn-in. This is
an extract:

Parameter file: simul.par
Iteration number: 10000
Burn-in: 3000

Average additive variance
7.59901448 -0.16399846 0.00000000 0.01532234
-0.16399846 0.27350263 0.00000000 -0.15480405
0.00000000 0.00000000 0.00000000 0.00000000
0.01532234 -0.15480405 0.00000000 0.08896942

Sd Additive variance
3.22667610 0.34369945 0.00000000 0.19072825
0.34369945 0.01706567 0.00000000 0.01195900
0.00000000 0.00000000 0.00000000 0.00000000
0.19072825 0.01195900 0.00000000 0.00989067

Average environmental variance 1-th
0.00000000 0.00000000
0.00000000 0.02117482

Sd environmental variance
0.00000000 0.00000000
0.00000000 0.00615793

Average residual variance
2035.84818836 0.79387308

0.79387308 0.06443367
Sd residual variance
107.81988846 0.59492772

0.59492772 0.00685906

Average h2 and additive correlation
0.00373137 -0.11954332 0.00000000 0.01751802
-0.11954332 0.00000000 0.00000000 -0.99344407
0.00000000 0.00000000 0.00000000 0.00000000
0.01751802 -0.99344407 0.00000000 0.00000000

Sd h2 and additive correlation
0.00160243 0.21534016 0.00000000 0.21255278
0.21534016 0.00000000 0.00000000 0.00502002
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0.00000000 0.00000000 0.00000000 0.00000000
0.21255278 0.00502002 0.00000000 0.00000000

For sire models all this correlations are not correctly calculated and there-
fore not printed, because the sire variance is 1/4 of the genetic variance. They
have to be inferred from the covariance samples. Same for maternal models
or sire-dam models.

4.8.2 solutions.txt

This file produced every 100 · thin iterations after burn-in contains the solu-
tions (mean and standard error, after burn-in) for fixed and random effects,
in order. The file is organized in columns, the first one is the solution for
the 1st trait, the 2nd one its s.e., the 3rd is the solution of the same effect
for the 2nd trait, the 4th its s.e., and so on. To get the breeding values you
must start from the corresponding level, i.e., the sum of the levels of all the
previous effects. In the example in 4.4 the line for the 1st breeding value is
10 + 20 + 100 + 10 + 1 = 141. This is an example of the file:

548.93036050 45.16501306 1.64939092 0.27237214
537.20447345 45.45495594 1.80820386 0.32165669
556.11838284 44.45897965 1.88057097 0.29986198
545.63172656 44.45013299 1.90946556 0.26104840
542.96121989 44.92410454 1.64755362 0.39665811
550.09841527 44.20431687 1.88156240 0.30906273

4.8.3 thresholds.txt

This file is produced every thin iterations, and gives the samples of the thresh-
olds, plus an +∞ threshold which is set to 999. It is not of much interest
because, for binary traits, the threshold is fixed to 0, and for polychotomous
traits the first threshold is 0 and the second threshold is 1. Therefore it may
be of interest for traits with more than 3 levels. The thresholds are ordered
threshold within trait. Each line is one sample taken every thin iterations.

4.8.4 samples.txt

This is the file with samples from the posterior dostribution of variance com-
ponents. Each line is one sample. There is a header file indicating what
is each column, e.g, this fragment is the first row of the genetic covariance
matrix:
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vara_0101 vara_0102 vara_0103 vara_0104
337.61511729 -0.65333460 0.00000000 1.49091783
273.35178896 0.63688959 0.00000000 0.30858498
384.97065327 2.17405027 0.00000000 0.58115261
342.89653329 6.01183500 0.00000000 -1.58711165
342.91126139 9.17706121 0.00000000 -1.79774013
299.79676759 -1.19988111 0.00000000 0.21024740

And, for example, varp0i_jk is the environmental covariance of the i-th
random environmental effect for the traits j and k. If j = k, it is the variance.

4.8.5 samplesFE.txt

This is the file with samples from the posterior distribution of fixed (or
random) effects if desired as explained in 4.5.9). Each line is one sample.
There is no header line. It looks like:

101.61328547 100.81883503 100.06813214 1.88082650 2.01280556 1.98134262

101.10080979 100.66554871 100.35605747 1.91243514 2.01313644 1.97147973

101.26135644 100.61985381 100.70051116 1.95634873 2.00828649 1.99967744

Following the example in 4.5.9), the first three columns correspond to
samples of the solutions for the 3 levels of fixed effects for the first trait,
and the second three columns to the solutions for the second trait. For fixed
effects, these are non-estimable parameters and therefore meaningless. To do
a proper analysis one needs to compute the contrasts, which are estimable
functions, e.g., in SAS:

data one;

infile ’samplesFE.txt’;

input age1 age2 age3;

contrast1=age2-age1;

contrast2=age3-age1;

run;

4.9 Post-gibbs analysis

Although results.txt provides a lot of information, it is important to check
the Gibbs sampler and to get plots, etc. This can be done in several ways.
One is to use SAS to get means and s.e. of the variance components and
their functions. To compute features of functions of variance components,
compute the function (say, h2) for each sample and you get the posterior
distribution of h2. This procedure is statistically correct and much easier
than using Taylor expansions. Another nice thing is that you get more precise

20



confidence intervals and perhaps non-symmetric intervals (no more genetic
correlations of 0.9 ± 0.10 beyond the bounds). For example, to test if a
correlation is different from zero one can just count how many times was it
greater than zero in the posterior distribution. For example, to compute the
s.e. of the heritability one can do the following in SAS:

data one;

infile ’samples.txt’;

input vara varp vare;

* discard burn-in;

if _N_>1000;

h2=vara/(vara+vare+varp);

* get features of the posterior distribution of h2;

proc univariate plot;

var h2;

run;

Or to compute the posterior distribution of the contrast:

data one;

infile ’samplesFE.txt’;

input age1 age2 age3;

* discard burn-in;

if _N_>1000;

contrast1=age2-age1;

contrast2=age3-age1;

* get features of the posterior distribution of the contrast;

proc univariate plot;

var contrast1 contrast2;

run;

4.9.1 R and BOA

The best is usually to use R (or S-plus) and BOA (they are in the cluster and
there is R free for Windows). BOA (google for “Bayesian Output Analysis
Program”) is a specialized package of R for MCMC output checking with
many options. It is best not to include too many variables in BOA at the
same time because you don’t see anything in the plots. BOA is useful for:

• Checking convergence visually and numerically.

• Plotting.
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Figure 1: Trace

The file samples.txt has a good format for BOA. What I usually do is:

• Checking convergence by plotting running means, traces, and com-
puting statistics (usually Heidelberg and Welch). The best is to plot
correlations, which are harder to estimate.

• Get means and relevant percentiles

• Plot graphs

After opening R, you start boa by > boa.menu(). Then there are menus.
You read the samples.txt file by:

BOA MAIN MENU -> file -> import data -> Options
-> Working directory

Enter new character string
1: C:\Documents and Settings\legarra\Mes documents\manualTM

BOA MAIN MENU -> file -> import data -> Flat Ascii file
Enter filename prefix without the .txt extension [Working Directory: ""]
1: "samples"

It is very important to enter the working directory. Then you can plot
and check following the menu and BOA manual. This is an example of
plots of genetic correlation between mammary insertion in first and later
parities (JDS 88:2238) which shows that Gibbs sampling do not provide out-
of-boundaries confidence intervals:
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Figure 2: Running mean

4.10 Problems

The main problems come from mistakes or very complex models. The good
thing is that when Gibbs sampling does not work, it is obvious (for example,
h2 = 0.99). The bad thing is that problems take long to show and usually is
an awful numerical error.

Mistakes It is important to verify that codifying is correct, parameter file
is good and the data and pedigree files are correct.

Cycling In very complex models (sire maternal models for several poly-
chotomous traits) programs cycled. This can be seen by plotting traces
in BOA. This was solved by using a better random number generator
by L’Ecuyer.

Positive-definiteness In complex models matrix can not be positive def-
inite. This will give numerical problems. This might be solved by
“bending” but it is not very nice because we are forcing them.

Complex models They take long time to run, are prone to errors and may
not run at all. Sometimes it is better to move to other models (sire
models for example).

Binary traits Binary traits may go out of bounds. The liability can be sam-
pled very far away from the threshold if the breeding values are very
high. This leads to big additive variances, which lead to big breeding
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values . . . To avoid this, a good solution is to change to sire models.
Another one is that the liability in binary traits may be set to at max-
imum ±4 residual standard deviations from the current mean (change
it by the liabilitybound variable in the program). Other option is
not set the residual variance to 1 (3.2.1). Multiple binary traits may
produce non-positive definite matrices. Some tricks to avoid this were
described in 3.2.1. Use with caution. At some point, problems come
mainly from lack of good data and there is no simple solution.

Extreme case problem If there is an uneven distribution of phenotypes in
one class of a fixed effect (that is, one herd with all calving ease=1), its
effect is non estimable. It is recommended to fit it as a random effect.
This was reported, for example, by Misztal et al. (JDS 72:1557) and
Carlos Moreno (GSE 29:145).
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