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1 Introduction

VCE is a program package to estimate dispersion parameters under a general linear model. The
statistical models cover a variety of possibilities like heterogeneous covariance components for
residuals as well as other random effects, models with longitudinal data, random regression,
multi-environment analyzes. Additive and dominance relationships are implemented. Disper-
sion parameters are obtained by restricted maximum likelihood (REML) using analytical gradi-
ents, as well as Gibbs sampling.

As regards the methods: analytical gradients is the workhorse and should be used wherever
possible. Gibbs sampling will also work for standard animal models but probably not for all
model possible with analytical gradients; but it is really slow. So you would probably not want
to use it, unless the memory constraints are much more severe on your machine than the CPU
speed, or if you are interested in the posterior distributions.

Acknowledgments Many people have contributed to the development of VCE. Some of
them have been involved personally while others have contributed via their code which they
made publicly available. The following is a (probably not complete) list of persons and their
engagement:

Arnold Neumaier[7] did the math for the analytical gradients and standard
errors

Didier Boichard joint implementation of inbreeding; did most of the stuff

that gives us approximations of standard errors
S. Gay & N. Nash UNCMIN - unconstrained BFGS quasi-Newton opti-

mizer
Ignacij Misztal & Miguel
Enciso-Perez

Sparse inverse and factorization

Alberto Garcia-Cortez joint implementation of Monte-Carlo EM and Gibbs
sampling

Marcos Rico involved on many fronts: coupling method, testing
Luis Varona initial version of Gibbs sampling
Helmut Lichtenberg did the Makefiles that help create the binaries
Spela Malovrh prepared test data sets and run tests with VCE
Norbert Mielenz finally fixed the standard errors
all those nice people who allowed us to use their machines for testing and

creating binaries and share data sets to demonstrate
properties of VCE
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1 Introduction

We acknowledge financial support from DFG, the German Research Foundation, which facili-
tated the initial version 5 of VCE to a large degree.

Referencing VCE Publications presenting results that were generated through VCE should
reference this Manual and the initial Neumaier&Groeneveld publication[7].

1.1 Availability and installation

VCE is free of charge for non commercial use but please acknowledge its use.

VCE is available from our anonymous ftp server: ftp.zgr.fal.de There are three types of files
available: binaries, test data, and documentation .

VCE comes as a binary i.e. an executable program. This reduces the installation procedure to
copying the binary to a directory that is in the search path of the prospective users. Binaries are
available in the bin directory which currently contains the following entries (at the same time
you can improve your German language skills):

If you want to install VCE on your machine, you simply need to select the corresponding binary
that runs on your platform. Files ready for transfer are in compressed form. Be sure, you always
pick the latest version, i.e. the one with the highest release number! Under UNIX for example,
you need first to uncompressed and then to untar the files. You should move the file to a position
in the file system where every user has read access and that is also in the search path. If you do
not have root access, ask your system administrator.

You can test immediately if the binaries run on your machine by starting them:

14



1.2 Test Data

eg@eno:~/newvce/release/6.0.2$ ./vce-Linux-x86_64-gfortran-6.0.2
************************************************
* VCE-6 *
* version 6.0.2 *
* 05-Nov-2008 @ 09:16:31 *
* Linux-x86_64-gfortran *
* written by *
* Milena Kovac, Eildert Groeneveld *
* and Alberto Garcia-Cortez *
************************************************

VCE [help] pfile funk
eg>

Then you should be in business.

1.2 Test Data

Next, you may want to obtain data and parameter files for testing and demonstration purposes.
On our ftp server, you need to go the directory examples. There you should see something like:

You should create a directory in your own space say vce6 and then unpack the test-data there:
mkdir vce6
cd vce6
g z i p −d vce−examples . t g z
t a r −xf vce−examples . t a r
226 T r a n s f e r c o m p l e t e .

15



1 Introduction

This will result in a directory test that has the following sub-directories:
‘−−−−− t e s t

| ‘−−−−− d a t a
| ‘−−−−−m a s t e r _ p f i l e
| ‘−−−−− v e r i f i e d
| ‘−−−−− v e r i f i e d / l ong
| ‘−−−−− temp

Have a look at them. The parameter files are stored in pfile. If you want to run a job, go to
test/temp and run it there:
eg ( f o r s s a , ~ / newvce ) : cd t e s t / temp
eg ( f o r s s a , ~ / newvce / t e s t / temp ) : vce . . / m a s t e r _ p f i l e / np01
Record : 1 from f i l e : . . / d a t a / d i e t 2 . d

1 r a s s e 1
1 sex 2
1 b e t r 11
1 t i e r 1
1 r s p 3 . 2 0
2 d r i p 8 . 1 0

Record : 2 from f i l e : . . / d a t a / d i e t 2 . d
1 r a s s e 8
1 sex 1
1 b e t r 2

. .

. .

The verified results are stored in directory ’verified’.

1.3 Documentation

This reference manual documents the features of VCE. Statistical issues of the models imple-
mented are more or less avoided, some are illustrated only to explain the examples given. Ex-
amples are not always meaningful from an animal breeder’s point of view, as they are primarily
used to demonstrate features of VCE rather than useful statistical models.

Documentations tends to be the less developed part of a package. Therefore, your comments are
very much appreciated and can help us to make these pages useful.

You find documentation on our ftp server in the directory doc available as PDF, HTML, and
plain ASCII text versions. Have a look every now and then to catch the updates.

1.4 User Interface

1.4.1 Starting VCE

VCE is controlled entirely via a parameter file, input data have to be available in one or more
files for measurements, one file for the common pedigree, and one or more files describing

16



1.4 User Interface

heterogeneity of trivial random effects. The process of estimating covariance matrices is then
started by typing the program name (vce) at the system prompt:

>vce

If VCE is started without an argument, you will see the following:

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ VCE ∗

∗ v e r s i o n 5 . 1 . 2 ∗

∗ 04−Dez−2003 @ 1 6 : 3 2 : 4 6 ∗

∗ Linux 2 .6 .0 − t e s t 1 1 i686 ∗

∗ w r i t t e n by ∗

∗ Milena Kovac , E i l d e r t Groeneve ld ∗

∗ and A l b e r t o Garc ia −C o r t e z ∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

VCE [ h e l p ] p f i l e

From this message, you can determine date of compilation, platform and the version of VCE
that you are using. This is important if you have bugs to report. If you want to start evaluation,
you should type the name of parameter file. At this stage you can enter the name of the parameter
file with a path that is appropriate to the current position in the file system.

1.4.2 Interactive help.

The program has a simple interactive help. If instead of the name of parameter file you type
the reserved word ’help’, you will enter the help mode. A help session is shown in listing 1.1.
After choosing the section name (or “all”) the user is prompted for the parameter file. If given,
the content of the parameter file is listed together with all options for the chosen section. If no
parameter file is typed but instead <return> is hit right away, we get the output given in Listing
1.1. As can be seen in lines 17–28 from Listing 1.1 all options for the chosen section name
(model) are given.

17



1 Introduction

Listing 1.1: VCE session for help
1 eg@eno : ~ / newvce / t e s t / temp$ vce6
2 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

3 ∗ VCE ∗

4 ∗ v e r s i o n 5 . 2 ∗

5 ∗ 05−Dez−2007 @ 0 8 : 4 5 : 2 7 ∗

6 ∗ Linux 2.6.22−14− g e n e r i c i686 ∗

7 ∗ w r i t t e n by ∗

8 ∗ Milena Kovac , E i l d e r t Groeneve ld ∗

9 ∗ and A l b e r t o Garc ia −C o r t e z ∗

10 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

11 VCE [ h e l p ] p f i l e funk
12 eg> h e l p
13 S e c t i o n ( comment , da t a , model , c o v a r i a n c e , system , o u t p u t , a l l ) :
14 eg> model
15 P a r a m e t e r f i l e :
16 eg>

17 ====================================================================================

18 S e c t i o n Keyword − f u l l s h o r t Typ D e f a u l t v a l u e s Format
19 −−−−−−−−−−− −−−−−−−−−−−−−−−− −−−−−− −−− −−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−

20 55 model s e t s e t C
21 56 model s c a l e s c a l e C non
22 57 model s c a l e y s c a l e y C non
23 58 model s c a l e x s c a l e x C non
24 59 model e q u a t e e q u a t e C
25 60 model m u l t i m u l t i C
26 61 model by by C
27 62 model / c f / c f L F
28 =====================================================================================

The program asks you for a section name you would like to get help on. Answer with one of
section names or type ’all’. Furthermore, you will be asked to type a name of parameter file.
If you just want to get the standard output, press return. You will get a list of legal keywords
within each section with complete and short name, type of variable and default values. The list
of sections and keywords is given in Listing 1.2 and 1.3.
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1.4 User Interface

Listing 1.2: Keywords in VCE in sections COMMENT and SYSTEM
=======================================================================================

S e c t i o n Keyword − f u l l s h o r t Typ D e f a u l t v a l u e s Format
−−−−−−−−−−− −−−−−−−−−−−−−−−− −−−−−− −−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−

1 commen j o b j o b C np01
2 sys tem b u r n _ f i r s t b u r n _ f i r s t I 1
3 sys tem burn_max burn_max I 10000
4 sys tem b u r n _ n e x t b u r n _ n e x t I 10
5 sys tem b u r n _ s t o p b u r n _ s t o p D 0.100000000E−02
6 sys tem i o d _ f i r s t i o d _ f i r s t I 1
7 sys tem iod_max iod_max I 1000
8 sys tem i o d _ n e x t i o d _ n e x t I 1
9 sys tem i o d _ s t o p i o d _ s t o p D 0.100000000E−03

10 sys tem m a r k _ f i r s t m a r k _ f i r s t I 500
11 sys tem mark_max mark_max I 10000
12 sys tem mark_next mark_next I 10
13 sys tem mark_s top mark_s top D 0.100000000E−02
14 sys tem pev pev L F
15 sys tem r a o _ b l a c k r a o _ b l a c k I 0
16 sys tem p o s t _ d e t a i l p o s t _ d e t a i I 1000
17 sys tem n e x t _ p o s t n e x t _ p o s t I 1
18 sys tem i n b r e e d i n g i n b r e e d i n g L T
19 sys tem mc_seed mc_seed D 0.551121231E+10
20 sys tem method method C AG
21 sys tem m i s s i n g _ v a l u e m i s s i n g _ v a R 0.111110000E+08
22 sys tem non_ze ro non_ze ro I 999999999
23 sys tem p r o p o r t i o n p r o p o r t i o n R 0.000000000E+00
24 sys tem r e p a r a m e t e r i z e r e p a r a m e t e L T
25 sys tem s k i p _ v a l u e s k i p _ v a l u e R 0.111120000E+08
26 sys tem s o l v e s o l v e C i o c
27 sys tem t o t a l t o t a l I 4000000
28 sys tem t o l e r a n c e t o l e r a n c e D 0.100000000E−06
29 sys tem d e b u g _ s t o p d e b u g _ s t o p L F
=====================================================================================
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Listing 1.3: Keywords in VCE in sections COVARIANCES, DATA, MODEL and OUTPUT
======================================================================================

S e c t i o n Keyword − f u l l s h o r t Typ D e f a u l t v a l u e s Format
−−−−−−−−−−− −−−−−−−−−−−−−−−− −−−−−− −−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−

30 c o v a r i s t a r t _ b i n s t a r t _ b i n Z
31 c o v a r i dump_bin dump_bin Z
32 c o v a r i s t a r t _ a s c s t a r t _ a s c Z
33 c o v a r i dump_bin dump_bin Z np01 . cov−b i n
34 c o v a r i dump_asc dump_asc Z
35 c o v a r i c o v _ z e r o c o v _ z e r o I 0
36 c o v a r i d a t f i l e d a t f i l e L F
37 c o v a r i form form C
38 c o v a r i f o r m a t f o r m a t C
39 c o v a r i l e v e l l e v e l I 0
40 c o v a r i l i n k l i n k C
41 c o v a r i v a l u e s v a l u e s D 0.000000000E+00
42 d a t a c r o s s b r e e d i n g c r o s s b r e e d L F
43 d a t a d a t f i l e d a t f i l e C . . / d a t a / meat2 . d a t
44 d a t a dep dep C r s p
45 d a t a d e p e n d e n t d e p e n d e n t C
46 d a t a dominance dominance C
47 d a t a f o r m a t f o r m a t C (2 f12 . 0 , 1 0 f8 . 0 )
48 d a t a group_by group_by C
49 d a t a h e a d e r h e a d e r I 1
50 d a t a i n d e p i n d e p C r a s s e
51 d a t a i n d e p e n d e n t i n d e p e n d e n C
52 d a t a l i n k l i n k C t i e r
53 d a t a p e d f i l e p e d f i l e C . . / d a t a / meat2 . ped
54 d a t a r a n f i l e r a n f i l e C
55 model s e t s e t C
56 model s c a l e s c a l e C non
57 model s c a l e y s c a l e y C non
58 model s c a l e x s c a l e x C non
59 model e q u a t e e q u a t e C
60 model m u l t i m u l t i C
61 model by by C
62 model / c f / c f L F
63 o u t p u t c o v f i l e c o v f i l e Z
64 o u t p u t debug debug L F
65 o u t p u t i n b r e e d i n g i n b r e e d i n g Z
66 o u t p u t l h s l h s Z
67 o u t p u t l o g _ g i b b s l o g _ g i b b s Z
68 o u t p u t mem_map mem_map L F
69 o u t p u t s e l d i f _ f i l e s e l d i f _ f i l Z
70 o u t p u t s o l u t i o n s s o l u t i o n s Z
71 o u t p u t dominance dominance Z
72 o u t p u t f a m i l y f a m i l y Z
73 o u t p u t vcm vcm Z
74 o u t p u t r e p r i n t r e p r i n t L F
======================================================================================

Whenever you give the name of your parameter files, default values of keywords which are
always described by only one value will be updated from it. This way you can see, if VCE
understands your parameter file. As an example, keyword 53 of the Listing 1.3 deals with
the pedigree file. Apparently, VCE has picked up the file name ’../data/meat2.ped’ from the
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1.5 Manual

parameter file.

So if you have the problem of VCE not doing what you thing it should be doing, try this and
see, if VCE reads your parameter file the way you intend it. Possibly, you have used a wrong
keyword, then VCE will not detect it and consequently not show the intended keyword value in
this list output.

1.5 Manual

This manual is split into one part that serves as a reference manual with an exhaustive description
of the parameter file syntax. The second part deals with examples and use cases. The prospective
user may want to have a look at this and locate a problem, that is close to her own. This would
give a good start for one’s own parameter file.

Finally, we have added the ever popular FAQ section with serious and not so serious questions.

If you have any better, more reliable examples and you are ready to share them with others, we
would be glad to incorporate them.

For the display of a number of sections from the parameter file the LATEX class “Algorithm”
is used as it is well suited for the required formatting; we know that the naming is not really
appropriate, but bear with us.
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2 Models and Methods

In this chapter we describe what kind of models are handled by VCE. Furthermore, the solving
strategies for obtaining covariance component estimates are outlined.

2.1 General form of the models

The statistical models used in VCE have the generalized form shown in equations 2.1 to 2.5.
The observations yi jt are explained by effects wi and v j and some interactions wvi j among them.
Vectorsω, λ, ψ, δ present expected values and matrices Ω, Λ, Ψ, Σ contain dispersion parameters
for wi, v j, ψ, and residual ei jt, respectively. All effects in the model are treated as random.
Then fixed effects are just special cases which have zero rows (and columns) in the covariance
matrices. Observations in a time/space sequence are assumed to have correlated residuals in
vector ei j, thus the matrix Σ is assumed to be full unless the user sets some correlations to zero
in a set of starting values.

yi jt = [1, x′it, u′i]wi + [1, s′it, q′j]v j + [1, z′it]wvi j + ... + ei jt (2.1)

wi = rand(ω, Ω) (2.2)

v j = rand(λ, Λ) (2.3)

wvi j = ψi j = rand(0, Ψ) (2.4)

ei j := eT
i,1:T = rand(δ, Σ) (2.5)

where means:
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2 Models and Methods

yi jt - observations
wi, v j - effects
wvi j - interaction between wi and v j

1 - constant, common characteristics
u′i , q′j - vectors of time/space independent characteristics
x′it, s′it - vectors of time/space dependent characteristics
ei jt - residual
ω, λ, ψ, δ - expected values for wi, v j, ψi j, ei j, respectively
Ω, Λ, Ψ, Σ - covariance matrices for wi, v j, ψi j, ei j, respectively

Each effect is expressed in a different form of regression equations with coefficients describing:

B common characteristics like constant 1 which are characteristics common to all units
(individuals, animals) which belong to a certain level

B time/space independent characteristics in vectors u′i , q′j which are special individual
characteristics existing over the whole lifetime or over the whole space.

B time/space dependent characteristics in vectors x′it, s′jt, z′it which are special individual
characteristics changing over time or space.

2.2 Examples

Let’s look at breed effect (Bi) on trait LMP in growing animals. Assume that the adequate
expression in the model looks like the equation 2.6. The coefficient 1 stands for the usual breed
effect, the second coefficient wi jt is used to explain changes of LMP over growth interval in form
of linear regression, the third coefficient si j adjusts LMP differences caused by uneven starting
weights also as linear regression. The expression 2.6 can be extended to the equivalent term 2.7.
It is clear that we expect the effects of weight (wi jt ) and starting weight (si j) to be specific for
each breed. In other words, regressions are nested within breeds.

... + [1, wi jt, si j]Bi + ... (2.6)

... + Bi + bw jwi jt + bsisi j + ... (2.7)

Let’s assume, the growth on the interval observed is better described by third order polynomial.
Thus, we need to add additional elements to the model as shown in equation 2.8. The expression
can be written in shorter forms like in and 2.10 and2.9. The characteristics within square brackets
turned into coefficients of incidence matrices, the symbol Bi is a vector all parameters describing
breed effect. For example, there are three parameters for each breed in equation 2.6 while
equations 2.9 or 2.10 expressed breed effect using five parameters.

... + Bi + b1w jwi jt + b2w jw2
i jt + b3w jw3

i jt + bsisi j + ... (2.8)
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2.3 Gibbs Sampling

... + [1, wi jt, w2
i jt, w3

i jt, si j]Bi + ... (2.9)

... + [1, p3(wi jt), si j]Bi + ... (2.10)

2.2.1 Heterogeneous covariances

Models can incorporate heterogeneous covariances for residuals as well as random effects. The
effect causing heterogeneity must be associated with a random effect in a separate data file. For
genetic effects, it can be added into pedigree file. It is assumed that subpopulations with different
covariance matrices for genetic effects do not have genetic ties and have the same source of
heterogeneity. A special case is heterogeneity in static two way crossbreeding schemes with the
possibility of adding more complex crossbreeding schemes.

2.2.2 Random regression models

A trait may be described by a function or more combined functions. Functions create coef-
ficients of incidence matrices, which we also call characteristics. Characteristics are of three
types. Common characteristics are the same for all units (individuals, animals) which belong
to a certain level. Time/space independent characteristics are special individual characteristics
which holds the whole lifetime (age at first delivery, birth weight) or over the whole space. The
third type are special individual characteristics which are changing over time or space (like test
day). Covariance functions for residual term are not supported yet but prepared to be added.

2.2.3 Non-additive genetic effects

VCE can handle models with dominance effect for direct, maternal, and/or paternal effects. The
dominance relationship matrix is created from the pedigree file. If desired, users may obtain
solutions of mixed model equations. Combination with heterogeneous covariances and random
regression models is possible.

2.3 Gibbs Sampling

The Gibbs method can be invoked in the system section by setting the ’method’ keyword as GI.
This keyword will be in most cases enough to perform the Bayesian inference on the variance
components, i.e., keeping the rest of the keywords as default values. Inferences are carried
out by setting flat priors on fixed effects and variances, while priors on additive, random and
maternal effects are assumed as multivariate normal distributions, as described in [8]. Although
the use of flat priors may be not suitable for some user requirements, in some circumstances,
prior distributions can be replaced by custom ones during the post-gibbs analysis from the VCE
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Gibbs output. This feature is not actually implemented in VCE, but it can be done easily by
advanced users.

The calculation of the burn-in period has been implemented as described in [1]. VCE in-
cludes determination of the burn-in period and discard these cycles from the calculation of the
marginals. The procedure is as follows: VCE starts from two sets of initial variance matrices,
and computes two chains with the same random deviates until they converge to the same values.
When both chains produce exactly the same numbers (for a given tolerance), the burn-in period
is assumed to be finished. The behavior of the convergence can be seen on the screen output and
it is easy to follow the logic involved on it.

Defaults for these keywords should be right, but users can use them to customize the Gibbs out-
put. For instance, to have just the chains and to do the post Gibbs analysis after VCE will be
finished, just set burn_max=0 to skip the coupled chains stuff and set gibbs_log=’filename’
in the output section. To set a fixed length for burn-in (10000 for instance), you can set
burn_max=10000 and burn_stop=0, etc.

Generally speaking, the choice of burn_next depends on the accuracy required in the determi-
nation of the burn-in period and the CPU time. For instance, if burn_next=10 and the burn-in
finish at iteration 2000, it means that the burn-in was reached between 1990 and 2000. burn_next
should be set to one only when the calculation of the burn-in will be discussed as a part of the
research.

After the burn-in period, only one of the chains is computed (really, there are no differences
greater than burn_stop between them) and the Monte Carlo variance of the estimates is obtained
from the single chain effective length size as described in [2].

2.3.1 Burn-in period

VCE computes the burn-in period on the fly by using the coupling method [4, 1], only two
chains are computed. Starting covariances for both chains are hard coded and the default random
number seed (0.551121231D+10) can be customized via the mc_seed keyword. After the burn-
in period will be finished, only the first chain will continue running.

Keywords related with burn-in are: burn_first, the number of cycles until the first check for burn-
in will be computed; burn_next, the number of cycles between burn-in checks; burn_max, the
maximum number of cycles to reach the end of the burn-in period; and burn_stop, the stopping
criteria for burn-in. The average of the differences in ratios will be compared against burn_stop
every burn_next-th cycle. In general, default values should be right for most cases.

Advanced users will probably prefer a raw single-chain Gibbs sampler in order to do the post-
analysis themselves. In this case, we recommend to set burn_max=0 in the system section and
log_gibbs=’your_filename’ in the output section. In this case, marginal posterior moments pro-
vided by VCE will be useless because of including the whole chain. Some comments about the
chain length were included in the next section (convergence). Each cycle stores the covariances
in ’your_filename’, being instantaneously available.
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2.3 Gibbs Sampling

2.3.2 Plotting

It is well-known that the analytical gradients estimator (AG) run several orders of magnitude
faster than a Gibbs sampler. Nevertheless, there are some entertainments available during the
the boring burn-in periods you will spend at the console. Setting the keyword log_gibbs, a small
gnuplot1 script called ’pfile.gnuplot’ is generated as shown in Listing 2.1. The script includes
the name of your current ’log_file’ and the columns corresponding to the first component in both
chains. An example of this feature is in algorithm 2.1, note that we set log_gibbs=’chain.np04’
in the output section of the parameter file. The np04 test example has 9 components, then the 3rd

column2 and the 12th column are displayed on a gnuplot window during the fly, other displays
have to be set manually. The script also writes an exportable burn_in.eps file. Both the cycles to
be written in log_file and the detail of the plots depend mainly on the burn_next keyword. Figure
2.1 shows a gnuplot-x11 output. Note that the second chain has a different color, allowing the
determination of the burnin period around the cycle 950 (exact value will be in the output file).
Both sides of the figure differ also in granularity, because only one every next-burn-th cycles are
stored in the log during the burn-in period.

Listing 2.1: Burn-in in VCE can be monitored on the fly by using gnuplot
1 >$ c a t vce_GI . p l o t
2 s e t d a t a s t y l e l i n e s
3 s e t nokey
4 s e t t e r m i n a l x11
5 p l o t ’ c h a i n . np04 ’ u s i n g 1 : 3
6 r e p l o t ’ c h a i n . np04 ’ u s i n g 1 :12
7 s e t t e r m i n a l p o s t s c r i p t eps
8 s e t o u t p u t ’ b u r n _ i n . eps ’
9 p l o t ’ c h a i n . np04 ’ u s i n g 1 : 3

10 r e p l o t ’ c h a i n . np04 ’ u s i n g 1 :12
11 >$ g n u p l o t
12 ( . . . ) g n u p l o t welcome message
13 g n u p l o t > l o a d ’ vce_GI . p l o t ’
14 g n u p l o t > l o a d ’ vce_GI . p l o t ’
15 g n u p l o t > l o a d ’ vce_GI . p l o t ’
16 g n u p l o t > ( . . . )

2.3.3 In Gibbs: restricted choice of models

Not all models that are supported with analytical gradients in REML can also be done with Gibbs
Sampling. The standard animal models in their univariate and multivariate rendition should
work. In the end you need to see for yourself and just try it out. Switching from Gibbs sampling
to REML is easy: just replace in the solver section the keyword method=’GI’ bay method=’AG’
and run again. This switch is also instructive as the runtime differences become very obvious:

1Gnuplot is free software, included in the Linux distribution packages, or down-loadable from mirrors of
http://www.gnuplot.info/

21st column includes cycle number, and 2nd includes ’burn’ or ’conv’
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while for GI you may be waiting hours for convergence AG may produce results minutes if not
seconds. Just give it a shot.

Figure 2.1: Gnuplot output example for burn-in
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3 Parameter file

All actions of VCE are driven by a parameter file. It contains information about the data in-
put and output files as well as information about the model definition. As a general principle,
defaults are taken when specifics are not given in the parameter file.

3.1 Definitions

Instructions for VCE are written in parameter file. The name of a parameter file can be any legal
file name under your operating system except the reserved word ’help’.

The structure of the parameter file is illustrated in the following. In order, to be more clear, the
section names in “Algorithms” are written in red and small caps. Keywords are written in blue
and italic, options are also italic but in cyan. In addition to space, there are other delimiters
and operators, some of them are required and the others are optional. They will appear like in
magenta. Words in curly brackets "{}" are optional and can be omitted.

Section names, keywords, and options are reserved words. The general structure is given in 3.1.

Algorithm 3.1 General structure of a section
Section_name
keyword_1 = value11 {value12 ...}
keyword_1 = value11 {value12 ...}
;
keyword_2 = value21 /option = expression
;

3.1.1 Section

A section begins with section name which must be written at the beginning of the line, i.e. begin
in column 1. Each section appears only once. The name must be the complete section name or
contain at least 6 characters from the beginning of the word.

A parameter file may contain seven sections: C, D, M, C, S,
O and E. It consists of one or more statements. The deliminator semicolon ‘;’ must
appear after each statements in D, M, and C section. These three sections are
also mandatory. A complete generic parameter file is shown in Algorithm 3.2 and detailed in
later chapters.
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3.1.2 Statement

Statements in the parameter file consist of one or more keywords separated by semicolon. They
can be written in more than one line without any continuation sign. Indent a statement within a
section by at least one space in order to avoid problems if it starts with a special character for
comment line (see also section 3.3) .

Statements in sections C, S, and O contain only simple keywords with one
value assigned and thus, semicolon may be omitted.

3.1.3 Keyword

Keywords are reserved words listed in algorithms 1.2 and 1.3. Keywords are followed by vari-
able(s), delimiters, numeric or logical value(s), options, and expression. The name must be the
complete keyword name or contains at least 6 characters from the beginning of the word.

VCE prints out keywords and their default values whenever you type ‘help’ instead of name
for parameter file. “Reserved” means that it must not be used in any user specified parts of the
parameter file like for effect and trait names.

3.1.4 Option

Options are appended to the end of statements and are separated from the main expression by
a slash. They start with a reserved word followed by an equal sign and expression. If there is
more than one option in one statements, they are separated by blanks.

..../c f = CLAS S (time);

3.1.5 Variable

Variable names consist of letters, numbers, and underscore(s). Other characters in the name may
cause some problems. The names must not be repeated. Start the name with a letter!

Names are limited to 30 characters, but shorter names may be preferred. It is suggested, that
names are chosen such that the variables are recognized by the first 10 characters. VCE will
distinguish them by their full names, however, they will appear only with short names (up to 10
characters) on outputs. For example, the two variables dependent11 and dependent12 will be
used in VCE as two different traits. On output, you will see only dependent1 for both variables.

3.1.6 Delimiter

Legal delimiters are blanks, tabulators, semicolons, commas, parentheses, square brackets,
slashes and single quotes. VCE replaces a tabulator by a single blank. While only one blank is
required as a delimiter more than one can be added.
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3.2 An example parameter file

3.1.7 Expression

Expressions are used in M and C sections to compute new variables, describe
statistical model and covariance structure. Expression consists of variables, operators, and func-
tions.

3.1.8 Operators

Valid operators are +, -, *, and / . Some of them are limited only to some keywords. Check later
sections for limitations.

3.1.9 Functions

A function is introduced by the function name following by variable or list of variables enclosed
in parentheses. For example, the square root of variable x can be written as sqrt(x) and the
Wilmink equation for lactation curve as lw(days_in_milk).

Most of standard FORTRAN functions are implemented. In addition, polynomials and lactation
curves are also covered. See Table 3.3 on page 43for more details.

3.1.10 Constants

Constants may have numeric, character, or logical values. Numeric constants are only real values
used as coefficients in model section or starting values for variance components. Character con-
stants are enclosed in ordinary quotes. They are used to describe file names (like ’data.txt’)and
formats. Logical constants are .true. or .false. .

3.2 An example parameter file

An example of a parameter file is given in Algorithm 3.2. It is a rather complicated statistical
model that uses a number of features that VCE presents. In the following the section structures
of the parameter file is described in some detail.

3.3 C section

The C section (Algorithm 3.3) is used to describe a job. Each job has a short name the
length of which is at most 10 alpha-numeric characters and will appear on every page of output.
The default value is taken from parameter file name: the first 10 characters from the beginning
or after the last slash. Job name can be specified also in  section using keyword “job”.
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Algorithm 3.2 Example parameter file
Comment job = jobname
This is generic pfile for random regression and other
models used in VCE generation 5.

Data
datfile =’diet1.dat’
format =’(3f12.0,10f8.0)’
dep = rsp dgain bfat
indep = rasse year sex betr animal wt100 age
header = 0 ;

datfile =’diet2.dat’
format =’(2f12.0,10f8.0)’
dep = rsp drip weight gain
indep = season rasse sex time_var age betr individual maternal
group_by = animal

;
pedfile = ’diet2.ped’
header = 0
format = ’(6i10)’
link = individual {maternal, paternal}
dominance = Dind {Dmaternal, Dpaternal}
{indep = animal sire dam {nesting_additive} {nesting_dominance}{group}}
{parent = 1, 2}{F1 = 3....};

ranfile = ’diet1.ped’ format = ’(36x, 2i2)’ link = herd
indep = herd nesting_effect ;

Model
rsp dgain bfat = rasse + p2(wt100) + [1,p3(age)] betr + [p5(age)]individual;

/ cf = time_var ;
drip = rasse + sex + [1,p3(age)] betr + individual;
gain = rasse + sex + [1,p3(age)] betr + [lw(age)]individual;

/ cf = time_var;
set dgain = gain;
multi = dgain bfat by = breed ;

Covariance
eff%name(cov%nesting): ....+ [...f_i ...]trait_j + ....
cov_zero = trait_i trait_ii
cov_zero = [...f_i ...]trait_j [...f_l ...]trait_k
cf = f_k(z_k);

residual (datfile, eff%name()) : cf = function(time_var);
start_asc = ‘./mycov.ascii’
dump_bin = ‘./mycovdump.bin’

System
skip_value = value
missing_value = value

Output
log_gibbs =’file_name’

End
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Algorithm 3.3 C section
Comment job = jobname
This is generic pfile for random regression and other
models used in VCE generation 6.

Comments may be written also within other sections. In such cases, comment lines must start
by one of characters: c, C, t, T , %, #, ∗and !. Such a special character must be in the first
column and followed by at least one blank. Comment lines are completely ignored by VCE. The
comment lines do not appear on output by error messages or by help contrary to the content of
the COMMENT section which is printed in the output log.

In the COMMENT section some restrictions apply:

B Sometimes, if you do not increment keywords or not use blank after special characters,
the statements can be interpreted wrong.

B Do not use reserved section names as first words in comments!

3.4 D section

In this section, input data to VCE is defined. This comprises one or more data files containing
measurement as well as auxiliary information and pedigree data.

3.4.1 Data sets

The D section (3.4) starts with section name “Data”. It contains description of all data-sets.
The three types of data-sets are:

B “datfile”: describes input files with measurements. It contains file name, lists of depen-
dent (traits, keyword “dep”) and independent (effects, source of heterogeneity for resid-
uals, keyword “indep”) variables, format (keyword “format”), and grouping factor (key-
word “group_by”). Multiple datfiles may be specified.

B “pedfile”: statement contains file name, format, the name or list of additive genetic
effect (keyword “link”), the name or list of non-additive genetic effects (keyword
“dominance”), and optionally, a list of columns introduced by keyword “indep”. Only
one pedfile statement is allowed.

B “ranfile”: statement contains file name, name of random effect (keyword “link”), format
(keyword “format”), and the list of variables (keyword “indep”). There are only two vari-
ables expected: one for levels of random effect and the other for levels of heterogeneity.
If it is missing, a homogeneous covariance matrix is assumed.

The description of each file may be written in more than one row and must be terminated by
semicolon. All valid keywords in the data section are listed in Table 3.1.
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Algorithm 3.4 D section
Data
datfile = ’file_name’
format = ’format_specification’
dep = variables
indep = variables
group_by = variable
header = integer
;

pedfile = ’file_name’
format = ’format_specification’
link = additive genetic effects
dominance = dominance genetic effects
indep = variables
header = integer
;

ranfile = ’file_name’
format = ’format_specification’
link = variable
indep = variables
header = integer
;
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3.4.2 Keywords in D section

File name. A file name follows the keyword which specifies the type of the data set. File
names must appear within single quotes and can be any legal file name including the directory
path. Notice, that file names may be case sensitive, depending on the operating system. Further,
observe that the file name must be specified such, that the file can be reached from the point of
invocation of VCE in the directory hierarchy the the file name string specified.

Examples. The data file measure.dat can be found in directory ../test/data:

dat f ile ′../test/data/measure.dat′

.

The pedigree file measure.pedig is located in the current directory:

ped f ile ′measure.pedig′

Table 3.1: Keywords in D section
KeyWord Defaults Alternatives Short description

datfile ’ ’ any legal file name introduce data file
pedfile ’ ’ any legal file name introduce pedigree file
ranfile ’ ’ any legal file name file describing heterogeneity for trivial

random effects
link effects in the model list of random effect(s) data in the file

is to be used
dominance effects in the model list of genetic effects with dominance

relationship
group_by variable name time or space dependent variable with

residual correlated
format free format (*) any legal FORTRAN format format for input data
header 1 0, 1, 2 .... number of rows to be skipped before

reading data
indep list of independent variables
dep list of dependent variables

Format. The keyword “format” is followed by legal f90 formats and behave the same as in
FORTRAN. The default is the FORTRAN free format and effective when the keyword “format”
is missing. Formats must be written between ordinary quotes and parentheses. In data files, use
only the F specifier for all variables including integers like effect codes. Dependent variables
must be read first, followed by independent variables. On the other hand, only integer specifiers
are expected for files describing random effects. T and X specifiers can be used for positioning.
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Examples. The first four values have length 12 with 4 decimal digits. The next seven values
have 8 digits and have no decimal points:

′(4 f 12.4, 7 f 8.0)′

Let’s read the same data, but variables are in different order. First, we need to jump to the column
64 and read three variables of length 12 with 4 decimal digits. The last 12-digit value starts in
the first column. Then, we need to skip 3 digits and six variables with length 6 and no decimal
digits are read. The last variable starts in column 105 of the data file, has length 6 and no decimal
digits.

′(t64, 3 f 12.4, t1, f 12.4, 3x, 6 f 8.0, t105, f 6.0)′

Header. Keyword “header” is used to skip the first few lines in data files if they contain
header records. It must be placed within area for a data-set and is valid only for that data-set.
The default value is "1" which is the correct setting is PEST is used for data coding.

Examples. Skip the first n-lines:

header = n

Do not skip any line:

header = 0

Dependent variables . Keyword “dep” or “dependent” introduces a list of dependent vari-
ables (traits). There may be more variables in the data section than needed in model section. In
the list dependent variables can be separated by blanks, tabulator or comma.

Examples.

independent = daily_gain, f ce back f at

Independent variables. The keyword “indep” or “independent” introduces a list of inde-
pendent variables: fixed and random effects, sources of heterogeneity, time or space variables as
well as nesting or grouping variables. All variables needed for any purpose must be read at least
from one data file. An exception is variable defined by keyword “set”. A variable name may be
repeated in data sets if it has exactly the same meaning.

In “pedfile”, the list of independent variable is optional. The default columns in pedigrees
file are animal, sire, and dam. If there is another type of pedigree information, for example
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parent with grandparent, or effect causing heterogeneity for genetic effects, the specification of
columns must follow the keyword "indep" or “independent”. Independent variables can be
separated by blanks, tabulator or comma. The names for the columns are reserved words from
the Algorithm 3.2 and must not be changed. They define a position of variable in pedigree or
level of heterogeneity for additive or non-additive genetic effects.

Table 3.2: Description of columns in pedigree file
KeyWord Defaults Alternatives Short description
animal animal - Animal; it does not need to be used for direct

additive genetic effect.
sire sire - Sire of the animal; it does not need to be used

for paternal effect.
dam dam - Dam of the animal; it does not need to be used

for specification for maternal effect.
SS SS - Sire of the sire; can not be present if sire ex-

ists.
DS DS - Dam of the sire; cannot be present if sire ex-

ists.
SD SD - Sire of the dam; cannot be present if dam ex-

ists.
DD DD - Dam of the dam; cannot be present if dam ex-

ists.
group group - Needed for selecting animals to be reported

dominance effect for individuals.
any string - nesting effect for

animal
The name of effect causing heterogeneity in
additive genetic effects.

any string - nesting effect for
dominance

The name of effect causing heterogeneity in
dominance(s).

Examples. An ordinary list of independent variables in a data file is:

independent = breed season weight, time, litter, animal, f animal

In this case, the model contains dominance effect f animal. Remember, that effect animal is
enough to compute dominance, but it must be read twice: once as additive (animal) and second
as non-additive ( f animal) genetic effect. The effect names may differ, for example we want to
use German names:

independent = rasse season gewicht, zeit, wur f , tier, dtier
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Link. Keyword “link” connects file information with random effect it is used for. The effect
name must be the same as in M and C sections. Effects are not expected to be
renamed. If the keyword “link” is followed by a list of effects, the effects are combined into
one. The combined effects like animal and maternal are always treated as correlated (animal nd
maternal should always be in this order: animal first; for mor information see later text).

Examples. The file is to be used for random effect litter:

link = litter

link = animal maternal

In the second example, the pedigree file is to be used for direct (animal) as well as maternal ad-
ditive genetic effects. The two genetic effects are assumed to be correlated. The names specified
behind LINK have to be from the list read from the data file. Each entry from this data file has
to have an entry also in the pedigree file.

Paternal additive genetic effect may appear as the second or even as the third genetic effect on
the list.

Dominance. Keyword “dominance” connects pedigree file information with the effects rep-
resenting the dominance effect. As in the additive genetic effect, the dominance effect may also
have maternal and paternal component. The names given to non-additive and additive genetic
components must not be the same. The dominance effect must be listed as effect in Mand
Csection.

The dominance effect is automatically created from animal (default), maternal or paternal effect
and is translated to a family effect. To ensure that the appropriate effect is assigned to a domi-
nance component in the data files, we can read the correct level from the data file by listing effect
names as independent variables. The second possibility exists in Msection with keyword
‘set’. Do not use both options at the same time! VCE may not understand you:-)

If you want to have also solutions for individual dominance effect, you must put in a request by
using the keyword ‘dominance’ into Osection.

Example 1. Use dominance relationship for effect f animal:

dominance = f animal

Let’s try to evaluate individual (dtier) and maternal (dsau) dominance effect:

dominance = dtier dsau

There is a possibility to model dominance for paternal effect if you find it useful.
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Example 2. Specify individual and maternal dominance effect. We write in D section for
pedigree file:

dominance = f animal f maternal

To assign animal to f animal effect, one can read dominance animal and maternal effects twice
as shown below. Be sure to use appropriate format.

independent = ...... animal f animal maternal f maternal .....

The alternative is to write ‘set’ statements under M section.

set f animal = animal; set f maternal = maternal;

Group_by. The keyword “group_by” is needed to ensure correct grouping of correlated mea-
surements. The keyword is followed by the grouping effect. The default value is ‘record’ or
’none’. In both cases, the observations are grouped as they appear in the input records. The
grouping effect must be coded sequentially without missing values. For example, if the grouping
effect is animal, animals with records must not be mixed with animals from pedigree, otherwise
animals with data must also be coded twice: once with pedigree and second without pedigree.

3.5 M section

M section (Algorithm 3.5) consists of statements separated by semicolon. Statements de-
scribe statistical models, define transformations (keywords ‘set’ , ‘scale’, ‘scaley’, ‘scalex’, ),
or redefine traits (keywords ‘equate’ and ‘multi’ together with keyword ‘by’ ).

3.5.1 Model statements

Model statements consists of three parts. On the left-hand-side, we always have a trait (depen-
dent variable) name or list of traits separated by space or tabulator. A set of traits with the same
model ends by equal sign (=). On the right-hand-side, the model statement contains explanatory
effects, i.e. regression functions, constants, and independent variables - covariates. The last part
of the model appears only in random regression models and is separated from the previous two
parts by slash ‘/’ and keyword ‘/cf’.
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Algorithm 3.5 A generic M section
Model
y_1 ... y_i = INT + eff_1

+ [1, f_k1(x_l)...)]eff_j
+ [f_k2(x_l, x_l1) ...)]eff_j1 ...

/ cf = f_cf(x_t) ;
y_i1 = eff_1 + [f_k1(x_l), f_k2(x_l, x_l1)]eff_2
set variable = expression ;
scale variable_i ... variable_j option ;
scaley option ;
scalex option ;
equate y_i = y_i1 ;
multi = y_i by = eff_j ;

Traits (dependent variables). Traits (y_1, ..., y_i, y_i1) are written on the left-hand-side
of the model. If model is the same for more than one trait, traits are listed in the same model
statement and separated by space or tabulator.

Let’s suppose, you want to apply different models to the same trait measured in different en-
vironment (time, space, etc.). Measurements are given different names like y_i and y_i1 in
generic algorithm (3.5) and described each with appropriate statistical model. Up to here, they
are treated as different traits. Use the keyword ‘equate’ in order to insure that all measurements
are treated as the same trait.

Effects (independent variables). An effect (in algorithm 3.5) is fully described by the name
(e f f ect_name) and coefficients listed in square brackets in front of the name.

[1, f _k1(x_l), f _k2(x_l1, x_l3]e f f ect_name

A set of coefficients for the model equations or design matrix is represented by constant values
(1) and/or functions ( f _k1, f _k2) separated by commas. Blanks after commas are allowed but
they are not required. The most often used constant is 1 and is treated as default. Therefore, if
the list of coefficients is missing, a coefficient with value 1 is assumed for each level presented
in the data. All functions available are explained in Table 3.3.

Categorical or class effects are identified simply by their name (e.g. rasse, betr, and animal in
Algorithm 3.6), while regression - if not nested - will be indicated by the first covariate (p1):
the effect of wt100 as a linear regression would be written as: p1(wt100). Nested regression is
indicated by the nesting effect (see effects betr and animal).

If you would like to have an effect in the model as categorical effect and additionally as nesting
effect for a regression as shown in 3.1, the effect can be presented in form 3.2. The example is
taken from the first model in 3.6. There are three traits (rsp, dgain, and b f at) with the same
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model. The model contains four effects: rasse, wt100, betr (shown as B j in 3.1), and animal.
The function p3 indicates a three order polynomial without intercept. To add the intercept (B j) in
the model for each polynomial, we put constant 1 in front of the polynomial function. Constants
must be separated from the function by a comma.

B j + bI j
(
xi jk − x

)
+ bII j

(
xi jk − x

)2
+ bIII j

(
xi jk − x

)3
(3.1)

[
1, p3 (age)

]
betr (3.2)

Algorithm 3.6 Some examples of model statements
Model
rsp bfat = rasse + p2(wt100) + [1,p3(age)] betr + [p5(age)]animal;
dgain = rasse + p2(wt100) + [1,p3(age)] betr + [p5(age)]animal

/ cf = CLASS(test_day) ;
drip = rasse + sex + [1,p3(age)] betr + animal;
gain = rasse + sex + [1,p3(age)] betr + [lw(age)]animal;

Intercept. In some models, it may be useful to include intercept in the model. This can be
done by effect name ’int’ as shown in 3.3 and 3.4. Both expressions can be used and will do the
same. The first one is preferred if variable x is used more than once.

[
1, p3 (x)

]
INT (3.3)

INT + p3 (x) (3.4)

The keyword INT is also used as a function which changes a real value into an integer. In such
cases, it is written in front of variable enclosed in brackets like in 3.5.

int(variable) (3.5)

Constant coefficients Constant coefficients with alternative values 1 and 0 are default for
categorical effects and are, thus, usually omitted. If you want to apply different one (a), use
function const(a).

The use of constant coefficients is described in the following example. In order to set up Reduced
Animal Model, you must read effect sire and dam from the data and treat them as the same effect
which will be named after the first effect in the model. In our case, the common effect is named
sire. Renaming of the effect to a new name (to animal for example) may not work. You should
use it in D section linking pedigree file as well as C section introducing it as random
effect. When setting up the equation system from the model, the constant 0.5 is applied.

41



3 Parameter file

Algorithm 3.7 Reduced Animal Model
M

bfat = rasse + [const(0.5)]sire + [const(0.5)]dam;
equate sire dam ;

Regression functions Some functions (Table 3.3) are given default names, the covariates
must be listed in appropriate order. The other functions may be combined with "FORTRAN"
functions, however, check the list before use. If a function or set of functions is nested within
some other effect, it is enclosed in square brackets [] ahead of nesting effect (3.6).

There are two types of polynomial regression. The functions pn perform scaling of independent
variable before computing coefficients of polynomials while the functions pan scale coefficients
after they are computed. If no scaling is required the pn and pan polynomials are the same. The
coefficients from Table 3.3 assume that scaling is involved with option all .
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Covariates (independent variables) Independent variables are enclosed in brackets () after
a function name (Table 3.3). The covariables must be prepared in data files or derived from data
as described in paragraph 3.5.2.

Covariance functions Covariance functions are used to describe longitudinal changes of
(co)variances over time. It (3.6) consists of keyword “/cf”, function name, and time variable.
The equal sign may be omitted. A time-variable usually appears in parentheses after a function
name (3.6).

/CF = CLAS S (variablet) (3.6)

The keyword “class” can be omitted (3.7), the time variable may appear without brackets. Class
is defined as integer part of a time-variable and is calculated as shown in 3.7. Be sure, that you
create a reasonable number of classes!

classt = INT (variablet) (3.7)

The time-variable must be listed in the effects for each data-set with a trait measured repeatedly
over time. It is assumed to be the same for all traits listed on the left-hand-side of the model. If
you need to have different time-dependent variable for some traits, write separate models. The
models are appropriate also whenever measurements are repeated along a spatial cline. Then,
the space variable will be used instead of time variable.

3.5.2 Transformation statements

Statement  Transformation statements start with the keyword ‘set’ followed by an equa-
tion with the general form (3.8). Transformation may be imposed on traits and covariates .

S ET variablenew = f unction(variable) (3.8)

S ET variablenew = variable1 operator variable2 (3.9)

The first type of statements ‘set’ (3.8) can be used with functions log, log10, sqrt, sin, cos, tan,
abs, int, while the second type (3.9) is appropriate for arithmetic operations like +, −, ∗, / , and
∗∗.
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Statement  Scaling of dependent (traits) as well as independent (covariates) variables are
useful to speed up the convergence and to avoid numerical problems. If required by functions
like in Legendre polynomials or in lactation curves, it is done by default and the user does not
have to do anything. Scaling is invoked by keyword ‘scale’ followed by variable name and
option(3.10) or keyword ‘scaley’ (3.11) for all traits or ‘scalex’ (3.12) for all covariates.

S CALE variable option (3.10)

S CALEY option (3.11)

S CALEX option (3.12)

Scaling is performed only for those covariates where the function applied allows scaling (for
example, in polynomials). All results on output are shown on the original scale if covariates
are scaled also by standard deviation (options all and std). Generally, scaling is performed
just after reading the data and checking for values to be treated as missing or required to be
skipped. Variables which are transformed by functions listed in Table 3.3 like S QRT , LOG,
S IN, etc. before using in linear regression, are scaled (if required) after transformation as shown
in example 2 below.

The options can be chosen from the list in Table 3.4. The option avg is default for covariates, all
for traits, and s11 for covariate in Legendre polynomials.

Table 3.4: Scaling options
Option Meaning Distribution or range of transformed variable

non no change between minimum and maximum value
avg v - avg(v) N(0, std(v))
std v / std (v) N(avg(v)/std(v), 1)
all (v - avg(v)) / std(v) N(0, 1)
s01 (v - min(v)) / (max(v)-min(v)) between 0 and 1
s11 2*(v - min(v)) / (max(v)-min(v)) - 1 between -1 and +1

Example 1. The model contains among others polynomial regression with covariable x (3.13).
Subtraction of the average is required for covariable x (3.14). There is no problem to use the
model shown in equation 3.15.

... + p3(x) + ... (3.13)

scale x avg (3.14)
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... + b1(x − x) + b2(x − x)2 + b3(x − x)3 + ... (3.15)

Example 2. The model contains among others polynomial regression with covariable x (3.16).
The difference from the previous example is in scaling. Subtraction of the average is required
for covariable x for each power (3.17).

... + pa3(x) + ... (3.16)

... + b1(x − x) + b2(x2 − x2) + b3(x3 − x3) + ... (3.17)

Example 2. Let’s assume the model requires a linear regression applied to log-transformed
variable (expression 3.18). The user specifies:

... + log10(x) + ... (3.18)

scale x all (3.19)

VCE understands instructions this way:

... + b[
log10(x) − log10(x)

σlog10(x)
] + ... (3.20)

Transformation of variable x would lead to wrong results. Therefore, it is not performed, no
matter what is specified in the parameter file! If you request scaling, it would be done on the
log-transformed variable.

Example 3. Let us suppose that we are working with lactation curve ls. It is enough to write
the model with expression 3.21.

... + ls(days_in_milk) + ... (3.21)

This function is performing its own transformations of variable days_in_milk. If the M
section of your parameter file contained for example statement scale days_in_milk all, scaling
would not be used for variable days_in_milk, but only for others where restrictions do not apply.

Example 4. We are trying to use Legendre polynomial of order 9 with independent variable
test_day (3.22). The variable test_day is always transformed by option s11.

... + plg9(test_day) + ... (3.22)
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Statement  The second form of the expression contains the keyword ’equate’ which
can be used to equate traits with different models (3.23) or effects (3.24). Effects must be pre-
sented with the same function, however, they may have different constant.

EQUAT E traiti trait j ... (3.23)

EQUAT E e f f ecti e f f ect j ... (3.24)

Statement 

MULT I = traiti BY = breed

3.5.3 Restrictions

B Effect animal should not be the first effect in the model.

B Effect animal should be written in the model before maternal or paternal effects.

B Use effect name only once in the model. Try to combine as in 3.2 or rename them to avoid
conflicts.

B In MULTI statements defined sub-traits are assumed to have the same coefficients
(limitation in DefineCoeff)

B Effects in EQUATE statements must be described with the same function. They can
differ only in a constant coefficient.

Table 3.5: Keywords in M section
KeyWord Defaults Alternatives Short description
set - allows transformation of dependent variables

and covariates
equate - list of traits or ef-

fects
allows different models for the same trait or
put some effects on the same starting position

multi ... by... - treats traits as different traits within effect
named after by

/cf ’ ’ function(variable),
variable

covariance function for residuals

INT INT - intercept

3.6 C section

The C section describes the structure of covariance matrices. The section contains
statements which must end with a semicolon. Statements may be extended to more than one
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line. There are two types of statements (Algorithm 3.8): the first describes covariance matrices
(eff_name, residual) and the second one explains if covariance matrices are specified by the
user (start_asc, start_bin, dump_asc, dump_bin). If residuals are treated homogeneous, the
keyword ’residual’ can be omitted.

Algorithm 3.8 A generic C section
Covariance
eff_name(eff_nesting): ....+ [...f_i ...]trait_j + ...;
residual (datfile, eff_nesting);
start_asc = ‘./mycov.ascii’
dump_bin = ‘./mycovdump.bin’

3.6.1 Description of random effects

The specification of a covariance matrix has two parts. The first introduces a name of the random
effect and the second lists traits where the effect is treated as random. The delimiter between
the two parts is a colon. Whenever the effect is treated random for all traits, the second part and
colon can be omitted.

Table 3.6: Statements in C section
Part I II

Statement Effect_name(nesting): List of traits with functions;
Example 1 animal ;
Example 2 animal(breed): dailygain + backfat;
Example 3 residual(datfile) ;
Example 4 herd: [lpg3]dailygain + backfat

Random effects. Each statement starts with a name for random effect. The name is obliga-
tory for all random effects in the model except residual.

By default, all covariances are assumed to be homogeneous, also among data-sets. To make them
heterogeneous, the effect causing heterogeneity has to be mentioned in brackets. Use keyword
‘datfile’ to insure the heterogeneity among multiple data-sets. Besides the data-sets, there may
be other nesting effects. The nesting effect does not need to be in the model, however, it must be
defined in input file for each record.

Heterogeneity is assumed to be caused by the same source for all additive genetic effects.
The same or the other source can be specified for dominance effects. The pedigree file must
contain the levels for all sources of heterogeneity.

For trivial random effects, the source of heterogeneity is specified in a separate data-set in D
section introduced by keyword ’ranfile’ (see 3.4.1). A record usually contains only the level
code for random effect and level of heterogeneity.
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Traits. The second part of statement contains the list of traits or functions within trait where
the effect is treated as random. The list may be omitted, if the effect is treated as random for all
traits. The effect can be mixed: some parts may be treated as random, some as fixed.

B If only the effect is mentioned, the random effect has expected value 0, it is treated as
random for all traits; the rank of the covariance matrix is the same as its order.

B If only a trait is mentioned, an effect is random for all functions describing this trait.

B The function name is sufficient; the function listed is treated as random, the function
skipped is fixed. All terms within function are treated the same.

B Constant coefficients like ’1’ are treated the same way as functions and has to be men-
tioned to be treated random.

B The statements “residual” has to appear whenever there are heterogeneous covariances
either among data-sets or other source (effect). A list of traits is not expected.

Examples A few examples as given in Table 3.6 will be discussed here.

Example 1. The first example in Table 3.6 is the simplest case: it requests the effect animal
to be random for all traits. If you want to add relationship, see D section (3.4.1).

Example 2. The second example in Table 3.6 requests heterogeneous covariance matrices for
the effect animal. The heterogeneity is caused by effect breed. Effect animal is treated random
for traits dailygain and backfat but not for others. For other traits, if there are any, the effect is
treated as fixed.

Example 3. The third example in Table 3.6 shows how to consider heterogeneous covariances
among data sets.

Example 4. The last example in Table 3.6 requires effect herd to be treated random for trait
backfat and partially for trait dailygain. The covariance components for dailygain are estimated
only for those coefficients produced by Legendre polynomial of order 3. Elsewhere, the effect is
treated as fixed.

3.6.2 Starting values for covariance components

The default procedure for estimating covariance component uses starting values in the middle
of the parameter space with covariances close to zero and variances evenly splitting the total
phenotypic variation. However, starting values for optimization can be

B read from file produced by previous evaluation run of VCE

B read from file written by the user
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The first and second option are activated by the keywords ’start_bin’ and ‘start_asc’ in C-
 section following the file name.

Default starting values. It is the best if starting values are taken from the middle of parame-
ter space. Thus, variances are equally distributed among components, covariances are assumed
to be close to zero.

Starting values from previous optimization. Starting values may be taken from previous
optimization. This is very useful if convergence is not reached because of low limits on iterations
allowed (’maxiter’), if we get additional data, or if old job has been killed unexpectedly. Notice,
that the binary dump file is always written even if you do not specify dump_bin in the covariance
section. As stated above, it defaults to ’jobname.cov-bin’

The file can be used if specified in C section by keyword ‘start_bin’ followed by any
file name. If the file name is omitted, the default name applies which is the job name and
extension ’.cov-bin’. N  -          
     !

The file contains covariance estimates and only those information that can not be extracted from
parameter file. The file will be overwritten when you restart the job. If you want to keep it,
make a copy which you can also use for reading in the values for restart. In order to continue,
the parameter file must not change in M and C section and the same method has
to be chosen. It can be used only with the same covariance structure as the old optimization.
In case of nested random effects or residual, the nesting effect should have the same number of
levels. If you want to start (slightly) different job with the covariance components from old job,
it is better to provide user defined starting values as described below.

User defined starting values for covariances. User defined starting values for covariance
matrices are placed in a separate file. The file must be specified in covariance section by keyword
‘start_asc’

The file must contain the basic information about the matrices on input. Each matrix is first
described by a heading followed by a matrix. The heading of a matrix must be written in one
line only.

The heading must contain information to which covariance matrix the following matrix will be
assigned. The name of covariance matrix follows the keyword ’link’ and must be the same as in
C section. There is no default value! If no other information is present, the covariance
components are expected to be in lower triangular form and will be read in free format and
interpreted as ratios. The same starting values will be used for all levels of heterogeneity.

Starting values may be specified as covariance matrices (’nat’) or ratios (’rat’) following keyword
’type’. If the keyword is omitted, the default value is ’rat’.

Matrices may be inserted in four different forms (keyword ’mform’): ’full’, ’upper’, ’lower’,
and ’diag’. The default is the lower triangular matrix.
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3.6 C section

Algorithm 3.9 Description of covariance matrices in ’start_asc’
link = animal level = level_code
mform =’lower’ type =’rat’ format =any_fortran_format
.30
.20 .35
−.10 .01 .20
link = herd form = ’full’
0 0 0
0 .35 .01
0 .01 .20
link = residual level = level_code datfile =any_legal_file_name
mform =’upper’ type =’nat’ format =any_fortran_format

317 −10.17 56.01 .01
2.45 −12.12 .25
1756 .02
0.35

Matrices must have the appropriate size (order) which depend on the number of traits and co-
efficients per trait. The covariances must be typed in the same order as defined by the model.
Coefficients listed by random effect are nested within trait. You can check the number of coef-
ficients for functions applied in table 3.3. If records contain longitudinal data, traits in residual
covariances are nested within class (see 3.6.4).

If some coefficients (rows/columns) are to be treated as fixed, the covariance components are
set to zero. If a component specified can not be estimated from the data, the component will be
deleted.

If some levels for heterogeneous covariance matrices are missing, the corresponding matrices
are filled with starting values for ’level’ 1.

Notice, that you always also need a “residual” covariance matrix.

3.6.3 Some examples of C section

Example 1. The only random effect in the model is animal. Residual covariance is assumed
to be the same for all data-sets.

Algorithm 3.10 Only additive genetic effect
Covariance
animal;

Example 2. Random effect animal has heterogeneous covariances among breeds. Herd is the
second random effect for traits listed and fixed for all other possible traits with herd effect in
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Table 3.7: Keywords in C section
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3.6 C section

the model. Residual is heterogeneous among data-sets. Starting values will be read from file
’./myfile.cov.’.

Algorithm 3.11 Nested covariance matrices for additive genetic effect and residual
Covariance
animal (breed);
herd : bfft adgft adgst;
residual (datfile);
start_asc =’./myfile.cov’

Example 3. Starting values for covariance components are found in a separate file.

There are two residual matrices, one for each data-set. There are assumed to be diagonal matrix.
Diagonal elements may be written in one or more rows. Residual covariances are assumed to be
zero and will not be computed.

Covariance matrix for herd effect is complete. Make sure that matrix is symmetric! The last row
and column are zero, because the herd effect is treated as fixed for the last trait.

Covariance matrix for the animal effect is given in upper form. Only covariances among neigh-
boring elements are supposed to be non-zero. The three covariances where starting values are
zero will not be optimized for.

Algorithm 3.12 Starting values for example 2
link = residual mform =’diag’ datfile =’./data1’

317. 2.45 1756. 0.35
link = residual mform =’diag’ datfile =’./data2’

217. 1.45 1456. 0.45
link = herd mform =’upper’
145. .01 .01 0
.01 1.37 .01 0
.01 .01 826. 0
0 0 0 0

link = animal mform =’upper’
145. .01

1.37 .01
826. .01

0.18

3.6.4 Residual covariance matrices

Simple models. Residual covariance matrix R (3.25) is a direct sum of residual matrices
Ri j (3.26) which differs due to missing values presented by selector matrix Pi or heterogeneity
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caused by an effect (level j). The transformation matrix Pi is derived from identity matrix by
setting diagonal element that correspond to missing observation to zero. R0 j (3.27) is matrix
of order trait by trait which contains variances on diagonal and covariances on off-diagonal
elements for residuals of all traits in a multi-trait model.

R =
∑⊕

Ri j (3.25)

Ri j = Pi ∗ R0 j ∗ PT
i (3.26)

R0 j =


σ2

je1 σ je12 σ je13

σ2
je2 σ je23

sym. σ2
je3

 (3.27)

Random regression models. Measurements repeated over time have different variance, the
changes may be described by a covariance function or “within time-classes”. The residuals
are correlated within group-classes. The residual matrix R has also block-diagonal structure
as in 3.25. The covariance matrix in each block Ri j may differ because of missing values or
heterogeneity. Assuming no heterogeneity (subscript j is omitted), the block-diagonal matrices
Ri are derived from R0 in 3.28. R0 is suitable for models with three traits (dependent variables)
which are measured sequentially m-times.

R0 =



σ2
e11 σe11e21 σe11e31 · · · σe11e1t σe11e2t σe11e3t · · · σe11e1m σe11e2m σe11e3m

σ2
e21 · · · σe21e1t σe21e2t σe21e3t · · · σe21e1m σe21e2m σe21e3m

σ2
e31 · · · σe31e1t σe31e2t σe31e3t · · · σe31e1m σe31e2m σe31e3m

. . .
...

...
... · · ·

...
...

...
σ2

e1t σe1te2t σe1te3t · · · σe1t1m σe1t2m σe1t3m

σ2
e2t σe2t3t · · · σe2t1m σe2t2m σe2t3m

σ2
e3t · · · σe3t1m σe3t2m σe3t3m

. . .
...

...
...

σ2
e1m σe1me2m σe1m3m

sym. σ2
e2m σe2m3m

σ2
e3m


(3.28)

Random regression models with repeated records. The models are the same as above.
In addition, some measurements may be repeated at the same time.

Let’s assume that in the last measurement (trait 3 in time m) is repeated three times. The matrix
R03m presents all the elements of matrix R0 (3.28) except the last row and column. The last
column without the last element σ2

e3m is assigned to vector R03m. Then, the extended residual
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matrix R∗0 looks like (3.29). Element σe3m presents covariance among measurements of trait 3
in time m.

R∗0 =


R03m R3m R3m R3m

σ2
e3m σe3m σe3m

σ2
e3m σe3m

sym. σ2
e3m

 (3.29)

3.6.5 Covariance matrix for “trivial” random effects

Simple models. Matrix is block-diagonal (3.30) with block (3.31) size equal to the number
of traits.

GH = I ⊗Gh (3.30)

Gh =

 σ2
h1 σh12 σh13

σ2
h2 σh23

sym. σ2
h3

 (3.31)

Random regression models. A trait is described by a function (or more functions, see
model section 3.5 ) with one or more coefficients. In our example (3.32), the first trait is de-
scribed by a function with two, trait i with three, and trait n with q coefficients . The zero
columns mean that these parts are treated as fixed.

Gh =



σ2
h11 σh11h12 · · · σh11hi1 σh11hi2 σh11ai3 · · · 0 0 σh11hnq

σ2
h12 · · · σh12hi1 σh12hi2 σh12hi3 · · · 0 0 σh12hnq

. . .
...

...
... · · ·

...
...

...

σ2
hi1 σhi1hi2 σhi1hi3 · · · 0 0 σhi1hnq

σ2
hi2 σhi2hi3 · · · 0 0 σhi2hnq

σ2
hi3 · · · 0 0 σhi3hnq

. . .
...

...
...

0 0 0
sym. 0 0

σ2
hnq



(3.32)

Random regression for random effect with heterogeneous covariances Covariance
matrices vary among nesting effect. The covariance matrix GH (3.33) is direct sum of blocks
Gh j, where subscript j stays for nesting effect. Each Gh j has the same form as Gh in 3.32.
Nesting effect must be specified explicitly in Data section under keyword ‘ranfile’ (3.4.1)!
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GH =
∑
⊕Gh j (3.33)

3.6.6 Additive genetic covariance matrix

Simple models. Additive genetic covariance matrix

GA = A ⊗Ga (3.34)

Ga =

 σ2
a1 σa12 σa13

σ2
a2 σa23

sym. σ2
a3

 (3.35)

Random regression for direct additive genetic effects.

Ga =



σ2
a11 σa11a12 · · · σa11ai1 σa11ai2 σa11ai3 · · · σa11an1 · · · σa11anq

σ2
a12 · · · σa12ai1 σa12ai2 σa12ai3 · · · σa12an1 · · · σa12anq

. . .
...

...
...

...
...

...
...

σ2
ai1 σai1ai2 σai1ai3 · · · σai1an1 · · · σai1anq

σ2
ai2 σai2ai3 · · · σai2an1 · · · σai2anq

σ2
ai3 · · · σai3an1 · · · σai3anq

. . .
...

...
...

sym. σ2
an1 · · · σan1anq

. . .
...

σ2
anq


(3.36)

Models with two or more additive genetic effects. Additive genetic covariance matrix is
more complex if maternal (m) and/or paternal (p) effects are added:

GA = A ⊗

 Ga Gam Gap

Gm Gmp

sym. Gp

 (3.37)

Heterogeneity of additive genetic effects. It is possible to account for heterogeneity of
additive genetic effects. In such case, each animal must be assigned to an effect causing hetero-
geneity. The effect must be listed as additional column in pedigree file.
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3.6.7 Dominance covariance matrix

Simple models. Dominance covariance matrix

GD = D ⊗ Da (3.38)

Da = 4D f =

 σ2
d1 σd12 σd13

σ2
d2 σd23

sym. σ2
d3

 (3.39)

Models with two or more dominance genetic effects. Dominance genetic covariance
matrices can be more complex if maternal (m) and/or paternal (p) effects are added:

GD = D ⊗

 Da Dam Dap

Dm Dmp

sym. Dp

 (3.40)

Heterogeneity of dominance genetic effects. It is possible to account for heterogeneity
of dominance genetic effects. In such case, each animal must be assigned to an effect causing
heterogeneity. The effect must be listed as additional column in pedigree file. It is assumed that
family and its progeny belong to the same level, while individual parent may belong to the other.
level.

3.7 S section

S section holds a whole variety of keywords they can be used to modify default values.

Algorithm 3.13 Sysem section
System
skip_value = value
missing_value = value

c ----------------------------- for gibbs
burn_stop = real_value
mark_stop = .001
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3.7.1 Keywords driving iteration procedures

The keywords in the following table are driving iteration procedures.

The Gibbs sampling method can be invoked in the system section by setting the ’method’ key-
word as GI. This keyword will be in most cases enough to perform the Bayesian inference on
the variance components, i.e., keeping the rest of the keywords as default values.

Keyword ’mc_seed’ is used as seed value for random function.

Keywords involved in the first burn-in step are the following.

B ’burn_first’: Cycle number where the convergence for burn-in is checked for the first
time.

B ’burn_max’: Maximum number of cycles allowed for burn-in.

B ’burn_next’: After ’burn_first’ cycles, the convergence for burn-in will be checked every
’burn_next’ cycles. VCE computes ’burn_next’ cycles of the first chain and ’burn_next’
cycles of the second one, then computes maximum differences. That is what is printed on
the screen.

B ’burn_stop’: Convergence criteria is the maximum difference on ratios between both
chains.

VCE computes the effective length size every several cycles looking for a Monte Carlo error
small enough. It can be customized also with the following keywords.

B ’mark_first’: Cycle number where the Monte Carlo error is checked for the first time. It
has to be set big enough to break the autocorrelation of the chain. If ’mark_first’ was set
small and VCE stopped just after a few cycles, try to increase it to be sure that the Monte
Carlo error does not grow after some hundreds of cycles more. We recommend to use the
default or even to increase it in cases of unexpected fast convergence.

B ’mark_max’: Maximum number of cycles allowed for convergence after burn-in. Of
course, it depends on your processor and your patience.

B ’mark_next’: After ’mark_first’ cycles, the convergence for Monte Carlo error will be
checked every ’mark_next’ cycles. Users have to take into account that the calculation
of the effective length size is slow for long chains. For that reason it is not recommended
to calculate it every cycle.

B ’mark_stop’: Maximum Monte Carlo error allowed. Note that the Monte Carlo error has
an exponential decay. Then, the Gibbs sampler will run forever to achieve tiny Monte
Carlo errors.

As in the case of the burn-in, defaults should be enough for a usual variance component estima-
tion job. Researchers interested in the behavior of the algorithms, or just because they prefer to
do the post Gibbs analysis themselves, can configure these keywords to run fixed length chains,
infinite chains, etc., or they can use the ’mc_seed’ keyword to repeat simulation experiments.

In case of ’method’ sol, user can specify also options for iterative solvers applying the following
keywords.
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B ’iod_first’: Iteration number where the convergence for solution is checked for the first
time. It is not very important. Default value is 2.

B ’iod_max’: Maximum number of cycles allowed for iterative solvers.

B ’iod_next’: After ’iod_first’ iterations, the convergence for solutions will be checked
every ’iod_next’ iterations. Default value is 1.

B ’iod_stop’: Convergence criteria is the maximum difference between two successive so-
lutions.

Table 3.8: Keywords driving iteration procedures
KeyWord Defaults Alternatives Short description
mc_seed 5511212312.0d0 any large number seed value
burn_stop .001 real value stopping criteria for burnin-loop (first)
burn_first 1 integer value number of tries within a chain in burnin-loop
burn_next 10 integer value
burn_max 10000 integer value maximum number of steps in burnin-loop
mark_stop .001 real value stopping criteria for mark-loop (second)
mark_first 500 integer value number of steps before first checking in mark-

loop
mark_next 10 integer value number of steps between checkings in mark-

loop. It must be smaller than mark_first!
mark_max 10000 integer value maximum number of steps in mark-loop
iod_stop .0001 real value stopping criteria in solver iod
iod_first 2 integer value number of steps before first checking in iod

solver
iod_next 1 integer value number of steps between checkings in iod

solver
iod_max 1000 integer value maximum number of iterations in solver iod
restart .false. .true. restart after burning

3.7.2 Keywords concerning additive genetic relationship

The model with genetic groups is used by default whenever genetic groups are present in the
pedigree file. It is expected that the pedigree file is coded with codes for genetic groups appended
to the list of animals. However, it is assumed that the genetic group does not have a record in
pedigree file. The number of animals is equal to the number of records in pedigree. Further,
no unknown animals are allowed in this case. For more discussion see section Data Preparation
4.6.1. If consideration of inbreeding is not desired (I would not know, why one would want to
use an “incorrect” procedure other than having a look), then keyword “inbreeding = .false.” can
be used.
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3.7.3 Keywords connected with data manipulation

The options specified under S section are valid for all data sets. Keywords define values to
be skipped (’missing_value’, ’skip_value’) or set to zero (’tolerance’).

Table 3.9: Keywords connected with data manipulation
KeyWord Defaults Alternative values Short description
missing_value 11111000. values treated as missing
skip_value 11111000. additional values treated as

missing, also for covariates
tolerance epsilon(real value)*1000 any real value any small real value to be con-

sidered as zero

Missing_value: The keyword’missing_value’ is used to define missing value for dependent
variable (trait). Value is deleted when read from the file. It is not used in any evaluation.
It is applied to all of them at the same time.

Skip_value: The keyword ’skip_value’ is used to define missing value for dependent variables
(traits) as well as for independent variables (covariables or class effects). It is applied to
all of them at the same time.

Tolerance: The keyword ’tolerance’ specified the smallest value to be treated different from
zero. Default value depends on machine precision.

3.7.4 Other keywords in S section

Table 3.10: Other keywords in  section
KeyWord Default values Alternative values Short description
method AG GI which method is to be used
solve see table 3.11 dir, ioc, iod, both, cg which solver is to be used
non_zero 1000000 number of non-zero elements
total 4000000 total amount of memory required by

solver
reparameterize .true. .false. eliminate dependent rows and columns

Method In VCE6, two methods are available: AG and GI are used for estimation of dispersion
parameters. They are introduced by keyword ‘method’.

The default method is a gradient method AG while the method GI implies Gibbs sampling.

Solve Keyword ‘solve’ is specified to choose the solver. The default value depends on the
method (Table 3.11).
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Table 3.11: Methods and solver
Solver Description AG GI

dir direct solution (SMP) + +

ioc iteration on coefficients + +

default dir ioc

3.8 File naming conventions

VCE produces a number of files all related to one run. It makes sense to be able to handle all
those together, either to copy, move or delete all of them through one command like “cp np01*
np01_dir/”. As a default (i.e. if filenames are not specified by the user in the parameter file), all
newly generated files start with the parameter file name. The default set of file names is derived
from the name of the parameter file. All the default files start with the parameter file name and
then get an extension that relates to the type of file. In this way, you can move/delete all files
from one parameters files run with one command like : mv np01-AG* backupdir/, or : “ls np01-
AG*” will list all files that belong to the run specified in parameter file np01-AG. However, you
are not completely free in choosing the parameter filename if you want this feature to work:
The parameter file should not contain a "." as this is used for the derived files. Thus, if you
want to qualify a parameter file use a"-something" like in np01-AG because the “.AG” would
get dropped for derived filenames if you choose the parameter file to be named “np01.AG”.

The list of default files for the parameter file “np01” is given in table 3.12.

If we want to change the base filename for all the new files created by VCE this is done by:

“COMMENT job=best_run”

Then all default output file names will look like: “best_run.lst”, “best_run.cov-bin” etc.

3.9 O section

O section is used to create desirable outputs. Each statement starts with a keyword listed
in algorithm 3.14. The default output file name consists of the job name and gets three letters as
extension separated by a dot.

3.9.1 Keywords in O section

Coefficient matrix.

The keyword ‘lhs’ allows to print out part of the coefficient matrix as well as right-hand-side.
If the matrix is larger, only 40 rows and columns are printed. The right-hand-side is printed
in the first column. The default format is ‘(41f9.4)’ and can be changed by option ‘format’.
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3 Parameter file

Table 3.12: default file name for parameter file np01
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Algorithm 3.14 O section
Output
covfile = ’file_name’ format = ’(format)’ next = integer;
inbreeding = ’file_name’ format = ’(format)’ next = integer;
lhs = ’file_name’ format = ’(format)’ next = integer;
dominance = ’file_name’ format = ’(format)’ next = integer;
vcm = ’file_name’ format = ’(format)’ next = integer;
family = ’file_name’;
log_gibbs = ’file_name’;
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3.9 O section

Table 3.13: Keywords in O section
KeyWord Defaults Alternatives Short description
log_gibbs - any legal file name write information about optimization also into

a file
dominance - any legal file name write solutions for individual dominance ef-

fect
family - any legal file name write family subclasses into a file
covfile - any legal file name Natural and ratio covariances are printed into

file
inbreeding - any legal file name Inbreeding coefficients is printed into file
lhs - any legal file name LHS is printed out into file
vcm - any legal file name the variance covariance matrix of all compo-

nents is written to the file
format - any legal FORTRAN format
mform - FULL|UPPER|LOWER specifies the form of the covariance matrices
reprint uses the binary log file to reformat the cov

matrices. It can be used as the vcestat in vce4.
Together with the covfile and its format and
form keyword, the matrices can be printed as
full, upper or lower.
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3 Parameter file

The option ‘next’ determines the iteration when the coefficient matrix is to be printed into
the file.

Dominance. The user can print out predictors for individual dominance effect by writing the
keyword ‘dominance’ under output section. They will be printed in a separate file.

Inbreeding. The keyword ‘inbreeding’ prints out the inbreeding coefficients for the animals.

Gibbs_log. Keyword ‘gibbs_log’ makes VCE write the Gibbs samples to the corresponding
file. See 2.3.2 on page 27for details and use.

Reprint. Sometime, the format of the covariance matrices need to be changed from the default
output that VCE generates. This can be done by specifying the covfile keyword in the OUTPUT
section. However, this would require rerunning the job (which you may not want to do if you
have already waited for two weeks before). As the covariance matrices are stored in full floating
point accuracy in the binary log file (defaults to jobname.cov-bin) it is sufficient to use this.
REPRINT does just that: if the parameter file is run again with REPRINT added as a keyword
in the OUTPUT section, it reads the binary log file (either the default or the one specified by
DUMP_BIN=’filename’ in the COVARIANCE section) and prints it in the format and form
specified in the COVFILE . If you want to use the covariance matrices directly in some other
package like PEST, you will need it in full format and not in the default upper triangle. Also, a
matrix may not be positive definite in its default printed format. Then something like this may
help:

OUTPUT
REPRINT;
COVFILE=’MYFULLMATRIX.TXT’ FORMAT=’(12f14.7)’ MFORM=’FULL’;

Notice: if you insert the above REPRINT lines into your original parameter file and run it, the
run log file will get overwritten. If you do not want that, rename the parameter file to something
else.

Mem_map. The keyword ‘mem_map’ is intended for debugging purposes.

VCM. The keyword VCM triggers the printing of the covariance matrices of the component
estimates. Thus, if you have a simple univariate model with one random and one animal com-
ponent, VCM would result in the printing of the variance covariance matrix of these three vari-
ances: residual, simple random and animal component. This would then be a matrix of order
3.
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3.10 E section

3.9.2 Options with keywords in O section

Options in O section are available only for keywords listed in Table 3.14 and they apply
only if keyword is used.

Table 3.14: file related defaults in O section
Keyword Default file name Default format Default next
log_gibbs job//’.gib’ / /

dominance job//’.dom’
family job//’.fam’ / /

covfile job//’.cov-fmt’ ’(e10.4)’ 1
inbreeding job//’.inb’ ’(i10,f8.5)’ 0
lhs job//’.lhs’ ’(41f9.4)’ 1
vcm job//’.vcm’ ’(10e18.10)’

3.10 E section

Section E is optional. It can be written at the end of parameter file or where we want the
instruction to end. The text below is ignored. Therefore, you can put the last results or longer
comments at the end of parameter file.
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4 Examples and Use Cases

In the this chapter we shall present a number of typical models that users can take as guidelines
for their own problems. The examples include parameter files and discusses issues that seem
worth mentioning. We present typical models used in animal breeding. This is not intended
to be an exhaustive treatment of the issue but rather presents a mixed bag of models that a
prospective user can look at to find one that is closest to his own problem. Then this particular
one could be used as a starting point.

Before we can deal with any model we need to explain the general problem of coding input data.

4.1 Coding the input data

To be able to run VCE all classes effects need to be coded consecutively starting at 1 and not
having any “holes”. Let us assume that we have four animal names in the dataset (used to be the
case in historical times), so I pick the names of some of our cows that I grew up with): Edda,
Sirene, Fokka, Olga. After coding the column that contains the animal names (i.e. their ID)
would contain the number 1 to 4. The procedure first sorts the animal names: Edda, Fokka,
Olga and Sirene. Correspondingly, Edda becomes 1, Fokka 2, Olga 3, and Sirene 4. The same
procedure is applied to all class codes: FEMALE becomes 1, CASTRATE 2, and MALE 3. This
can be done with any program. Often, people use PEST, which can be used conveniently for this
purpose. A corresponding parameter file is given in listing 4.1. If PEST is being used a few
comments are in order.

1. The objective of a PEST run in the context of variance component estimation as a prepara-
tory step for running VCE is only the data coding. To this effect an OUTFILE keyword
has to be specified in the RELATIONSHIP and DATA section as shown in lines 5 and
13. “[text]” has to be appended, to generate an ASCII file, else you will get a binary file
that VCE cannot handle. Notice that the ’data/ex01.dat’ will create the file ex01.dat in the
directory ’data’ from the point in the directory tree, where PEST is started.

2. under INPUT (line 14) all traits and effects are listed. For more information see the PEST
User’s Guide.

3. the MODEL section contains all those elements from the above INPUT part that you want
included in the coded data file. This means, all those traits should get included here, that
you want to used in the VCE run. More precisely, the VCE run can use a subset but
obviously not more than specified here. In this example we use the five traits backfat,
loin, drip, redfibr and feed plus the effects age, sdate, sex, herd, litter and animal.
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4 Examples and Use Cases

4. As we are not interested in the computation of BLUPs and BLUEs, the composition of the
covariance matrices are irrelevant as long as they are positive definite.

5. The same rational applies to the SOLVER section: no solutions are required, only the
data coding part needs to be done, and then we want PEST to exit gracefully as soon as
possible. Thus, we limit the number of iterations as in line 51 and 52. Also, we do not
want to use a lot of memory, that’s why we put the effects into IOD and IOD_GS and
specified in the same lines. Any other combination would also do.

6. Finally, in the original dataset 999 where used to indicate missing values. Thus, we put
in a TRANSFORMATION section (lines 53–59), which translates the 99 into the string
11111111. used as a default in VCE to indicate zero.

The first 4 lines from the data file ’scr-msee.dat’ are given in Listing 4.2. This is the output from
a PEST run that was used for recoding the data (Listing 4.1 on the facing page).

PEST inserts a first line containing the names of the covariables, the traits and finally the class
effects. The format of the continuous variables may look somewhat strange, but it is the gen-
eral floating point representation from the programming language FORTRAN, the language that
VCE is written in. From the PEST coding traits are always written first to the file. In this case
they are columns 1 through 5. This is followed by one covariable and then followed by the class
effects.
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4.1 Coding the input data

Listing 4.1: Pest parameter file coding
1 comment ex01
2 some meat q u a l i t y d a t a
3 r e l a t i o n s h i p
4 i n f i l e = ’ d a t a / s c r . msee . ped ’
5 o u t f i l e = ’ d a t a / ex01 . ped ’ [ t e x t ]
6 r e l _ f o r an i ma l
7 i n p u t
8 a n i ma l 1 ,4
9 m_p 5 ,4

10 f_p 9 ,4
11 d a t a
12 i n f i l e = ’ d a t a / s c r . msee . da t ’
13 o u t f i l e = ’ d a t a / ex01 . da t ’ [ t e x t ]
14 i n p u t
15 age 0 96 3 0
16 s d a t e 999 82 3
17 Rasse 999 92 1
18 sex 9 93 1
19 he rd 999 94 2
20 l i t t e r 2222 99 6
21 a n i ma l 3333 1 4
22 s i r e 2100 5 4
23 dam 2100 9 4
24 b a c k f a t 0 18 2 1
25 l o i n 0 20 3 1
26 Dr ip 0 33 3 1
27 F l f a 0 36 3 1
28 ph1 0 39 4 2
29 r e d f i b r 0 43 4 1
30 f e e d 0 71 3 2
31 model
32 b a c k f a t = age+ s d a t e +sex+he rd+ l i t t e r +an im a l
33 l o i n = age+ s d a t e +sex+he rd+ l i t t e r +an im a l
34 Dr ip = age+ s d a t e +sex+he rd+ l i t t e r +an im a l
35 r e d f i b r = age+ s d a t e +sex+he rd+ l i t t e r +an im a l
36 f e e d = age+ s d a t e +sex+he rd+ l i t t e r +an im a l
37 VE
38 1 . 1 . 1 . 1 . 1
39 . 1 1 . 1 . 1 . 1
40 . 1 . 1 1 . 1 . 1
41 . 1 . 1 . 1 1 . 1
42 . 1 . 1 . 1 . 1 1
43 VG
44 v g _ f o r a n i ma l
45 1 . 1 . 1 . 1 . 1
46 . 1 1 . 1 . 1 . 1
47 . 1 . 1 1 . 1 . 1
48 . 1 . 1 . 1 1 . 1
49 . 1 . 1 . 1 . 1 1
50 s o l v e r
51 i o d s d a t e , sex , herd , l i t t e r [ m a x _ i t e r = 3
52 i o d _ g s a n i ma l [ m a x _ i t e r = 3
53 t r a n s f o r m a t i o n
54 t r e a t e d _ a s _ m i s s i n g
55 b a c k f a t none 99 none
56 l o i n none 9 . 9 9 none
57 Dr ip none 9 9 . 9 none
58 r e d f i b r none 999 .9 none
59 f e e d none 9 . 9 9 none
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4 Examples and Use Cases

This coded data file can be used for many different models in VCE, ranging from single trait to
5 trait models and those that contain any of the factors/effects that were used in the initial PEST
run used for coding.

4.2 One Random Effect

This is the simplest model in variance component estimation. Let us assume that in our dataset
we know that belonging to a certain litter cause variation among litters and that this is supposed
to be random. The dataset contains animal records from a growing and slaughter experiment in
swine.

4.2.1 One random effect, single trait

The parameter file is given in listing 4.3. For clarity, the section names are capitalized. A number
of things need to be noted:

COMMENT section use the COMMENT section for just that: comments giving some details
on the run.

DATA section

B in the DATA section the input file needs to be specified. The name of the file given
between the hyphens must lead to the actual file from the position where VCE is
started. Remember, that VCE is started from the command line (old school, know
what you are doing :) ). For the given parameter file to work, i.e. to find the file
’data/scr-msee.dat’ you need to go to the directory that contains this file (by the ’cd’
command which is the same for all real operating systems like Unix, Linux, MacOS,
plus even Windows. Then, also the output files will be written by the current run
into this directory.

B the ’depend’ keyword specifies the continuous variables that can either be used as
traits or right hand side or as covariables, then part of the left hand side. The order
needs to be the one from the data file. Also, all columns must be listed here, as the
file is read from left to right reading as many floating point variables as given in the
’depend’ statement.

B reading of the record is continued with the number of variables listed in the ’indep’
line. Also here, no columns should be skipped.

B if you want to skip some columns, a ’FORMAT’ can be specified in the ’datfile’ line.
B THE FIRST LINES READ FROM THE FILE ARE PRINTED BY VCE, CHECK

IF YOU GOT THE CORRECT COLUMNS! There is nothing more embarrassing
then reporting a heritability for daily gain but due to a mistake you read the backfat
column.

MODEL section
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4.2 One Random Effect

B our trait of interest is BACKFAT, the model is dead simple: and intercept is fitted
through INT (which is the only element in the model equation that does not have to
be specified in the DATA section). This is followed by the the LITTER effect. It is
worth remembering, that each model must have a fixed effect, which in normal life
is always the case. Should you not have a real one, use INT.

B effects listed in the COVARIANCE section become random, i.e. for these effects
covariance components get estimated. Again, here it is the LITTER component.

B in the SYSTEM section the expected number of nonzero elements together with a
total needs to be specified. If you specify a wildly large number, your computer may
not be big enough for VCE to allocate this amount of memory. It is good policy
to start with a few hundred thousands and then increase it, when VCE stops telling
you to increase it. While NON_ZERO has to reflect the number of non zero coeffi-
cients of the mixed model equations is TOTAL required to for the additional storage
requirements over and above that for the non zero elements which is used for stor-
ing the Cholesky factors and the inverse elements of the mixed model equations and
other auxiliary data. As a rule of thumb you may want to start TOTAL with a figure
that is about 2 – 4 times the value of NON_ZERO. If VCE does not have enough
space it will reallocate more and try again, repeating the process until enough space
is available. However, it may be faster to abort this process (i.e. VCE), increase
TOTAL in the parameter file and start VCE again.

Listing 4.2: Input Data
1 BACKFAT LOIN DRIP REDFIBR FEED AGE SDATE SEX HERD LITTER ANIMAL
2 0 .320E+01 0 .388E+02 0 .810E+01 0 .525E+02 0 .349E+01 0 .182E+03 10 2 11 2 1 1
3 0 .170E+01 0 .355E+02 0 .220E+01 0 .652E+02 0 .364E+01 0 .185E+03 10 1 2 4 2 1
4 0 .330E+01 0 .358E+02 0 .350E+01 0 .602E+02 0 .340E+01 0 .182E+03 10 1 1 5 3 1

Listing 4.3: One Random Effect
1 COMMENT EXAMPLE_1
2 i n p u t f i l e :
3 BACKFAT LOIN DRIP REDFIBR FEED AGE SDATE SEX HERD LITTER ANIMAL
4 Simple one t r a i t random model
5 DATA
6 d a t f i l e = ’ ex01 . da t ’
7 d e p e n d a n t = BACKFAT LOIN DRIP REDFIBR FEED
8 i n d e p e n d = AGE SDATE SEX HERD LITTER ANIMAL;
9 MODEL

10 BACKFAT = i n t l i t t e r ;
11 COVARIANCE l i t t e r ;
12 SYSTEM
13 non_ze ro =200000
14 t o t a l =300000
15 end

The results for a single trait one random effect model are actually only two numbers: the residual
variance and the variance attributed to the random component in the model, as shown in line 12
and 18 in listing 4.4.
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4 Examples and Use Cases

Listing 4.4: One Random Effect, output in file ex01.vce.list
1 1 7 . 1 2 . 2 0 0 7 1 3 : 1 9 : 0 1 page 4
2 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

3 ∗ E S T I M A T E S I N F O R M A T I O N ∗

4 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

5
6 Mon Dec 17 1 3 : 1 9 : 0 1 2007 ex01 . vce CPU t ime used : 0 : 0 0 : 0 0
7
8 AG Log l i k e l i h o o d : 1979 .5324 s t a t u s : 1 a t i t e r a t i o n : 19 / 19
9

10 −−−−−−−−−−−−−−−−−−−−−−−−−−−−− M a t r i c e s : NATURAL −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

11 Type : R Leve l : 1 l i t t e r No . : 1112 P a t t e r n : T
12 0 .033955
13
14 Type : E Leve l : 1 r e s i d u a l No . : 1997 P a t t e r n : T
15 0 .20171
16
17 −−−−−−−−−−−−−−−−−−−−−−−−−−− M a t r i c e s : P h e n o t y p i c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

18 0 .23567
19
20 −−−−−−−−−−−−−−−−−−−−−−−−−−−−− M a t r i c e s : RATIOS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

21 Type : R Leve l : 1 l i t t e r
22 0 .14408
23
24 Type : E Leve l : 1 r e s i d u a l
25 0 .85592
26
27 −−−−−−−−−−−−−−−−−−−−−− M a t r i c e s : STD_ERR of components −−−−−−−−−−−−−−−−−−−−−−−−

28 Type : R Leve l : 1 l i t t e r
29 0 .7334E−02
30
31 Type : E Leve l : 1 r e s i d u a l
32 0 .8871E−02
33
34 −−−−−−−−−−−−−−−−−−−−−−−− M a t r i c e s : STD_ERR of r a t i o s −−−−−−−−−−−−−−−−−−−−−−−−−−

35 Type : R Leve l : 1 l i t t e r
36 0 .030117
37
38 Type : E Leve l : 1 r e s i d u a l
39 0 .030117

It is important to check for the status line as printed in the run log (Listing on the previous page,
line 8): the status itself should always be 1, then safe convergence is guaranteed. Sometime,
with bad data structure relative to the model you may get 2 or even 3. This does not necessarily
mean that the estimates are useless. For further information see the discussion status.

4.2.2 One random effect, multiple traits

A two trait model is easily implemented as shown in listing 4.5, line 10 by simply adding the
desired trait - here it is DRIP - to the list.

72



4.2 One Random Effect

Listing 4.5: One Random Effect
1 COMMENT EXAMPLE_2
2 i n p u t f i l e :
3 BACKFAT LOIN DRIP REDFIBR FEED AGE SDATE SEX HERD LITTER ANIMAL
4 Simple one t r a i t random model
5 DATA
6 d a t f i l e = ’ ex01 . da t ’
7 d e p e n d a n t = BACKFAT LOIN DRIP REDFIBR FEED
8 i n d e p e n d = AGE SDATE SEX HERD LITTER ANIMAL;
9 MODEL

10 BACKFAT DRIP = i n t l i t t e r ;
11 COVARIANCE l i t t e r ;
12 SYSTEM
13 non_ze ro =200000
14 t o t a l =300000
15 end

With two traits we get one residual covariance matrix of order 2 by 2 and one for the random
litter effect. These are in the Listing 4.6. As can be seen, the estimates of the variance for the trait
BACKFAT are slightly different now. The estimate for BACKFAT for the LITTER component
changed from .033955 to .03401 for the bivariate model and went from .20167 to .20171 for the
residual variance.

Experience tells us, that massive changes do not happen when going to higher dimensional
models. Should this be the case, do look again at the status of the runs involved. Also, when
doing more traits, it may be useful to quickly do a number of univariate runs to get an idea about
the heritabilities. In higher dimensional models these will be different but not by a large margin.
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Listing 4.6: One Random Effect, output in file ex02.vce.list
1 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

2 ∗ E S T I M A T E S I N F O R M A T I O N ∗

3 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

4
5 Tue Dec 18 1 1 : 1 8 : 0 6 2007 ex02 . vce CPU t ime used : 0 : 0 0 : 0 0
6
7 AG Log l i k e l i h o o d : 3920 .5394 s t a t u s : 1 a t i t e r a t i o n : 27 / 27
8
9

10 −−−−−−−−−−−−−−−−−−−−−−−−−−−−− M a t r i c e s : NATURAL −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

11 Type : R Leve l : 1 l i t t e r No . : 1112 P a t t e r n : T T
12 0 .03401 −0.01982
13 2 .16280
14
15 Type : E Leve l : 1 r e s i d u a l No . : 1997 P a t t e r n : T T
16 0 .20167 0 .00755
17 6 .39363
18
19 −−−−−−−−−−−−−−−−−−−−−−−−−−− M a t r i c e s : P h e n o t y p i c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

20 0 .23567 −0.01228
21 8 .55643
22
23 −−−−−−−−−−−−−−−−−−−−−−−−−−−−− M a t r i c e s : RATIOS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

24 Type : R Leve l : 1 l i t t e r
25 0 .14430 −0.07309
26 0 .25277
27
28 Type : E Leve l : 1 r e s i d u a l
29 0 .85570 0 .00665
30 0 .74723
31
32 −−−−−−−−−−−−−−−−−−−−−− M a t r i c e s : STD_ERR of components −−−−−−−−−−−−−−−−−−−−−−−−

33 Type : R Leve l : 1 l i t t e r
34 0 .00645 0 .03190
35 0 .27586
36
37 Type : E Leve l : 1 r e s i d u a l
38 0 .00823 0 .03409
39 0 .28400
40
41 −−−−−−−−−−−−−−−−−−−−−−−− M a t r i c e s : STD_ERR of r a t i o s −−−−−−−−−−−−−−−−−−−−−−−−−−

42 Type : R Leve l : 1 l i t t e r
43 0 .02664 0 .11796
44 0 .02930
45
46 Type : E Leve l : 1 r e s i d u a l
47 0 .026641 0 .030014
48 0 .029302

In multiple trait model so called “missing values” are an important issue. This means that for
one animal not both or all traits may have measurement. Here it is important that the user checks
if missing values are correctly identified. The default is taken from the PEST coding. Missing
values are indicated by 111111000 (which in exponential notation is .11111E+08) as given in
Listing 4.7.
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4.3 More than one random effect and adding a fixed.

Listing 4.7: Missing Data indicated by .11111E+08
1 0 .11111E+08 0 .14500E+03 0 .11111E+08 0 .11111E+08 1562 1
2 0 .11111E+08 0 .17000E+03 0 .11111E+08 0 .11111E+08 433 2
3 0 .11111E+08 0 .20000E+03 0 .21500E+03 0 .30500E+03 1741 2
4 0 .11111E+08 0 .14800E+03 0 .17500E+03 0 .20500E+03 1741 2
5 0 .11111E+08 0 .16500E+03 0 .18500E+03 0 .28500E+03 1741 2
6 0 .11111E+08 0 .13000E+03 0 .11111E+08 0 .11111E+08 1741 2

4.3 More than one random effect and adding a fixed.

This actually presents nothing much new. Just add another entry from the INDEP list in the
MODEL and also under the covariances section (Listing on this page). Then VCE will treat this
as a random effect and try to estimate the corresponding covariances.

However, let us add a word of warning. There has to be a good reason for an effect to be
considered random. Sex as an example is certainly not a suitable candidate: it has only two or
three classes and we cannot assume that their occurrence can be considered samples from an
underlying population. This is different with head/year/season (HYS) classes (which are often
also considered fixed). Often, there is a large number of HYS in a data set. Further, it can be
argued that they can be considered samples form an underlying “population” of HYS. In short:
know what you are doing!

Listing 4.8: One Random Effect
1 COMMENT EXAMPLE_3
2 i n p u t f i l e :
3 BACKFAT LOIN DRIP REDFIBR FEED AGE SDATE SEX HERD LITTER ANIMAL
4 Two t r a i t random model wi th f i x e d e f f e c t
5 DATA
6 d a t f i l e = ’ ex01 . da t ’
7 d e p e n d a n t = BACKFAT LOIN DRIP REDFIBR FEED
8 i n d e p e n d = AGE SDATE SEX HERD LITTER ANIMAL;
9 MODEL

10 BACKFAT DRIP = i n t age he rd l i t t e r ;
11 COVARIANCE
12 l i t t e r ;
13 SYSTEM
14 non_ze ro =200000
15 t o t a l =300000
16 end

Fixed effects are likewise simple to add: they also have to occur in the INDEP list of the DATA
section (except for INT, the intercept). Also, the user must have a good reason for adding
the effect. With fixed effects you need to know how many observations you have in the cells:
estimating a fixed effect on the basis of 3 observations is nonsense. However, you will never
find this out, unless you preprocess the data prior to the VCE run and generate these statistics.
Again: know what you are doing!
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4.4 The Litter Effect

In pig breeding the common litter effect is usually considered an important source of variation.
It is the non genetic effect that being part of a common litter has on the animal’s performance.
This is relevant for the coding the data. How can we identify a litter in the total dataset? Clearly,
the dam identification is required. If this is used on its own, then all offspring from one dam
will get the same ID, i.e. also those from different litter of the same dam. Thus, a code for the
litter effect can be defined by a concatenation dam ID and its litter number. For instance, for
dam 4711 with three litters the offspring could have the litter codes: 4711-1, 4711-2, 4711-3.
Alternatively, a concatenation of dam ID and the birth date of its offspring should also work.
That may be 4711-2006-01-13, 4711-2006-06-01, 4711-2007-03. After coding either of them
we shall get 1,2,3.

Sometimes the concatenation of ID and birth date may be too long for PEST to allow coding
which has a maximum of 15 characters. Then the birth year and month will be sufficient: no
sow has two litters in the same month.

Thus, for coding the litter effect the sow ID and the birth date should be placed next to each
other in the data file. Then the litter effect can be coded by including the sow ID and birth year
and month in one code.

4.5 The Sire Model

BLUP started with sire models. The model is simple in that the effect to be placed in the model
is the sire of the recorded animals. This results in a small system of normal equations as we may
have 100000 animals but originating from only 500 sires. Accordingly, the order of the mixed
model equations which has to be set up and solved in each iteration is only of dimension 500
(ignoring any other effects). As a result, the estimation of the sire covariance structure will be
much faster. To obtain genetic parameters, the sire variance component has to be interpreted
in additive genetic terms. As the sire component catches 1/4 of the additive genetic variance,
the results from VCE for the sire component needs to be multiplied by 4 to obtain the additive
genetic variance.

4.6 Univariate Animal Model

Animal models have become the work horses in genetic evaluation and selection in animal pop-
ulations following the sire models. The animal component - in conjunction with the additive
genetic relationship matrix which is derived from the pedigree data estimates the additive ge-
netic variance. As far as the model section in VCE goes, the animal effect is determined by
the coded animal IDs. However, animal models need the numerator relationship matrix to make
sense. Thus, we need to consider the inclusion of the pedigree of the animals analyzed.
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4.6.1 Data preparation

Again, data need to be coded for all inputs to VCE. Apart from the data file now also the pedigree
file needs to be coded. This means, that an animal with ID DE21009_HJ0090 must have the same
integer number in both the pedigree and the data file. Again, coding can be conveniently done
with PEST or any other way that you can master.

Here, we are giving a PEST example in Listing 4.9. The file ’midped.cod’ and ’mid800.cod’
will contain the coded data as shown in Listing 4.10. The first block gives the first few lines
from the coded pedigree file. It starts with a header line “animal ancestor_1 ancestor_2 type
b_order” which stands for Animal, Sire, Dam in this example, followed by two columns that are
only relevant to PEST. Type is 1 if all two ancestors are known, 2 if the sire is known but not the
dam, 3 if the dam is known but not the sire, while 4 means that no parent is known. Also, it can
be noticed, that each animal, including all ancestors must have a record in the pedigree file, the
base parents then have 0 for the unknown parents (and type = 4).

Listing 4.9: Coding of pedigree data with PEST
1 RELATIONSHIP
2 r e l _ f o r an i ma l
3 i n f i l e = ’ . . / d a t a / mid . ped ’
4 o u t f i l e = ’ midped . cod ’ [ t e x t ]
5 i n p u t
6 a n i ma l 1 6
7 m_p 8 6
8 f_p 15 6
9 . .

10 d a t a
11 i n f i l e = ’ . . / d a t a / mid800 . da t ’
12 o u t f i l e = ’ mid800 . cod ’ [ t e x t ]
13 i n p u t
14 a n i ma l 3000
15 t e s t d a t e 200
16 l i n e 10
17 he rd 10
18 sex 2
19 w e i gh t 0
20 bf 0
21 d g _ t e s t 0
22 f c e 0
23 dg_farm 0
24 model
25 b f = i n t we i gh t ( l i n e ) l i n e an ima l
26 d g _ t e s t = i n t l i n e t e s t d a t e an ima l
27 f c e = i n t l i n e t e s t d a t e an ima l
28 dg_farm = i n t he rd sex l i n e t e s t d a t e an ima l

PEST codes animals always first with the base animals (i.e. those that do not have further
ancestors) last. The same holds for coding genetic groups. Assume that you have 1000 animals
and in all 10 genetic groups. Then, PEST would code the animals from 1 – 1000 and from 1001
– 1010 the genetic groups.
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Listing 4.10: Coded pedigree and data
1 midped . cod :
2 a n im a l a n c e s t o r _ 1 a n c e s t o r _ 2 t y p e b _ o r d e r
3 1680 486 2564 1 0
4 1681 2567 2571 1 0
5 1682 273 2571 1 0
6 1683 273 2571 1 0
7 1684 273 2571 1 0
8 1685 479 2625 1 0
9 1686 1902 643 1 0

10 1687 1902 643 1 0
11 . . .
12 mid800 . d a t :
13 BF DG_TEST FCE DG_FARM WEIGHT INT ANIMAL TESTDATE LINE HERD SEX
14 0 .11000E+02 0 .11111E+08 0 .11111E+08 0 .61300E+03−0.50000E+01 1 1 18 1 2 2 1
15 0 .10700E+02 0 .11111E+08 0 .11111E+08 0 .43100E+03−0.15000E+02 1 2 19 1 2 2 1
16 0 .13700E+02 0 .11111E+08 0 .11111E+08 0 .65800E+03 0 .20000E+01 1 10 20 2 2 1 1
17 0 .95000E+01 0 .11111E+08 0 .11111E+08 0 .56100E+03−0.13000E+02 1 11 20 2 2 1 1
18 0 .13300E+02 0 .11111E+08 0 .11111E+08 0 .58100E+03−0.10000E+02 1 13 20 2 2 2 1
19 0 .14700E+02 0 .11020E+04 0 .23300E+01 0 .11111E+08−0.40000E+01 1 12 19 2 2 1 2
20 0 .11111E+08 0 .11111E+08 0 .23400E+01 0 .11111E+08 0 .00000E+00 1 2113 1 5 1 1 3

When running genetic groups model, notice that PEST does not allow unknown parents: each
animal has to be assigned to either a a sire or a dam or a genetic group. The same applies to the
coding for VCE. Thus, with genetic groups all animals must either have a parent or a genetic
group as the final record in the pedigree recursion. If this is done with PEST and its GROUPS
keyword in the RELATIONSHIP section, then all base animals will in fact be treated as genetic
groups. If on the other hand the groups keyword is dropped in the pest run, then a longer pedigree
file will be created which also has for all base animals one record each, containing the animal
ID and a 0 for unknown sire and dam.

Thus, for coding outside of PEST (actually, the same applies to using PEST for the coding
purpose), you have two situations.

1. no genetic groups: create a pedigree file that has for each animal ID a record independent
if that animal has a known parent or not. Unknown parents are identified through ’0’

2. with genetic groups: use actual parents for each animal where this is known. Assign those
animal for which the parents are unknown to a genetic group. If you run this through
PEST use the keyword GROUPS in the RELATIONSHIP section. In a genetic groups
model no unknown parents must be used in the pedigree file.

4.7 The Sire Model with Relationship

In a sire model without additive genetic relationships it is assumed that all the sires are unre-
lated. Often this is not the case. Then the pedigree of the sires should be used in the model.
The definition in the VCE parameter file is identical to that of an animal model as described
above. However, there is one issue worth considering. All animals in the data file must have
a representation in the pedigree file. This is a requirement of VCE. Should this condition not
be met, VCE will stop. However, the pedigree file itself may contain many more entries also
from animals that are not at all related to those with records in the data file. While this will
not produce wrong results, it will unduly increase the size of the set of mixed model equations
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and therefore increase computing requirements. Thus, the pedigree file should be constructed
such, that it contains only records that are tied to the performance records in the data file. The
procedure to follow should be:

1. for each record in the the data file

2. identify the animals parent

3. for each parent identify its own parents - perform this step recursively until no more par-
ents are known

4. all animals touched in step 3 will make up the pedigree file

There are a number of way to perform this checking. There is a Fortran90 program by Eildert
Groeneveld (genped.f90) which will do just that. It can also be used to perform some other
filtering of the source data and will create a consistent data/pedigree set ready for coding. Then
there are other ways to do this. Some use SAS while similar Perl procedures are part of the
database framework APIIS(CreatePediStack.pl).

One further concern is the depth of the pedigree. Imagine a data set of size 5000 animals with
records. In an animal model the size of the mixed model equations will be minimally of order
5000 (other factors need to be added). If we now add the pedigree derived from the performance
recorded animals, this number will increase. With 2 generations of ancestors it may go up
to 9000 (or whatever). If the pedigrees are very long, i.e. the pedigree data go back many
generations the system size may increase very much. So at this point it may be worth putting up
an upper limit on the number of generations to include.

4.8 Multivariate Animal Model

Above the term “work horse” has been used in the context of Animal Model. Actually, its multi-
ple trait rendition is the actual work horse in genetic evaluation in animal breeding. Accordingly,
variance component estimation is of prime importance. “real life” model are always multivariate
often with traits from different environments, implying that usually not not all traits are measured
on all animals. The following gives an example from pig breeding which is reasonably close to
real life.
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Listing 4.11: Multi Trait Animal Model
1 DATA
2 c . . . . . . . . . . . . . . . . . . . . . . f i e l d t r a i t s
3 d a t f i l e = ’ . . / d a t a / f i e l d . da t ’
4 f o r m a t = ’ ( 2 f12 . 0 , 3 6 x , f12 . 0 , 1 2 x , f8 . 0 , f8 . 0 , f8 . 0 , 4 f8 . 0 ) ’
5 dep = b f f t a d g f t
6 i n d e p = w o f f t a n i ma l sex l i t t e r h y s f t ;
7
8 c . . . . . . . . . . . . . . . . . . . . . . s t a t i o n t r a i t s
9 d a t f i l e = ’ . . / d a t a / s t a t i o n . da t ’

10 f o r m a t = ’ (24 x , 3 f12 . 0 , 1 2 x , f12 . 0 , 3 f8 . 0 , 8 x , f8 . 0 ) ’
11 dep = a d g s t vc b f s t
12 i n d e p = hms a n i ma l sex l i t t e r s t y s ;
13
14 c . . . . . . . . . . . . . . . . . . . . . . p e d i g r e e f i l e
15 p e d f i l e = ’ . . / d a t a / np37 . ped ’ f o r m a t= ’ ( 4 I10 ) ’ l i n k =an im a l ;
16
17 MODEL
18 b f f t = r e g ( w o f f t ) an ima l sex l i t t e r h y s f t ;
19 a d g f t = an im a l sex l i t t e r h y s f t ;
20 a d g s t = an im a l sex l i t t e r s t y s ;
21 vc = an im a l sex l i t t e r s t y s ;
22 b f s t = r e g ( hms ) an ima l sex l i t t e r s t y s ;
23
24 COVARIANCE
25 a n i ma l ; l i t t e r ; h y s f t ; s t y s ;
26 r e s i d u a l ( d a t f i l e ) ;
27 SYSTEM
28 non_ze ro =963000
29 t o t a l = 11000000
30 end

As can be seen, there are two groups of traits: the first is measured in the field on young boars
and gilts, here we have ultrasonic backfat and daily gain. On a second set of animals we have
station test traits, also daily gain but here through the testing period, then valuable cuts after
slaughter of the animals followed by another backfat measurement. Notice that these two sets of
traits are mutually exclusive: an animal is either in the field or at a test station. Further, each set
has its own set of factors influencing the traits, but both are of course tied together through the
animal identification with a joint pedigree, on the basis of which additive genetic covariances
are estimated.

The setup in Listing 4.11 read data from two files: one for the station test data and the other for
the field test, each with its own format. Once we get to the model definition all traits are treated
independent of their source file. However, for each trait the appropriate model is specified.
Here, the first two traits are the field test traits while the last originated at the test station. The
COVARIANCE now determines the covariance matrices to be estimated: the animal component
estimates the additive genetic variance, then we have a common litter component, also for each
trait in the model, and then one herd x year x season covariance matrix for the field test traits and
a station x year x season for the other three station test traits. Finally, the residuals are estimated
within each data file, with the dimension 2 x 2 for the field test and 3 x 3 for the station test traits.
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Listing 4.12: Estimates for Multi Trait Animal Model
1
2 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

3 ∗ E S T I M A T E S I N F O R M A T I O N ∗

4 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

5 −−−−−−−−−−−−−−−−−−−−−−−−−−−−− M a t r i c e s : NATURAL −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

6 Type : A Leve l : 1 an i ma l No . : 10410 P a t t e r n : T T T T T
7 0 . 0 1 0 . 1 8 −0.81 −0.11 0 . 0 1
8 410 .04 527 .51 −1.56 0 . 0 8
9 2021 .97 7 . 6 7 0 . 5 9

10 2 . 9 3 −0.15
11 0 . 0 3
12
13 Type : R Leve l : 1 l i t t e r No . : 4659 P a t t e r n : T T T T T
14 0 . 0 0 0 . 2 9 1 . 3 3 0 . 0 2 0 . 0 0
15 828 .51 −286.37 4 . 2 8 0 . 5 6
16 3222 .37 8 . 1 8 −0.65
17 0 . 0 8 0 . 0 1
18 0 . 0 0
19
20 Type : R Leve l : 1 h y s f t No . : 661 P a t t e r n : T T
21 0 .058 2 .193
22 910 .369
23
24 Type : R Leve l : 1 s t y s No . : 117 P a t t e r n : T T T
25 1306 .55 −3.67 −0.37
26 0 . 9 8 −0.04
27 0 . 0 2
28
29 Type : E Leve l : 1 r e s i d u a l / f i e l d . d a t No . :

4563 P a t t e r n : T T F F F
30 0 .015 0 .693 −−− −−− −−−

31 513 .194 −−− −−− −−−

32 −−− −−− −−−

33 −−− −−−

34 −−−

35
36 Type : E Leve l : 1 r e s i d u a l / s t a t i o n . d a t No . :

3231 P a t t e r n : F F T T T
37 −−− −−− −−− −−− −−−

38 −−− −−− −−− −−−

39 4217 .91 −38.99 4 . 2 9
40 2 . 8 1 −0.16
41 0 . 0 6

The resulting estimate are given in Listing 4.12. It is these components that get estimated by
VCE, all the following matrices like phenotypic variances and ratios are computed on the basis of
these natural variance covariance components. As can be seen, for each random component we
have one matrix, starting with the animal component which in genetic terms can be interpreted
as additive genetic covariance matrix. The “No.” gives the number of levels involved in each of
the matrices. Thus, for the additive genetic component we have 10410 animals with 4659 entries
for the litter matrix. Notice that for the factor “stys” we have only 117 levels, which is not really
a lot.
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4.9 Models with maternal additive genetic effect

Maternal effects models are a special case of the animal models. The statistical model behind it
assumes that there is an additive genetic component of the individual for its records or measure-
ment and likewise another effect of mother on that same trait. Now, the mother and the individual
are not genetically independent but rather related through the numerator relationship matrix. All
of this results for one trait in having to estimate a 2 x 2 matrix, containing the additive genetic
effect of the animal (also called direct) on the trait plus the additive genetic effect of the dam of
the animal on that same trait plus a covariance between the two.

A model file for maternal effect models is described in 4.13.

Listing 4.13: Model with maternal effect
1 Comment np02
2 h e r e we have a u n i v a r i a t e an i ma l model wi th m a t e r n a l and a d d i t i v e
3 d i r e c t g e n e t i c e f f e c t s . Th i s i s done by s p e c i f y i n g t o l i n k a d d r e s s e s
4 ( dam a n i ma l ) .
5 Data
6 d a t f i l e = ’ . . / t e s t / d a t a / a 1 t e s t m . da t ’ f o r m a t = ’ (2 f12 . 0 , 5 f8 . 0 , 8 x , f8 . 0 ) ’
7 dep = b i r t h
8 i n d e p = damage sex hys dam an i ma l ;
9 p e d f i l e = ’ . . / t e s t / d a t a / a12 . ped ’ f o r m a t = ’ (3 I10 ) ’ l i n k = an im a l dam ;

10 Model
11 b i r t h = p1 ( damage ) sex hys an im a l dam ;
12 C o v a r i a n c e
13 a n i ma l ;
14 hys ;
15 System
16 non_ze ro= 200000
17 t o t a l = 300000
18 End

Beware, there is a bug in the parsing of the parameter file: in maternal effects models you MUST
always have ANIMAL DAM/ last in the model, else VCE may stop.
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Listing 4.14: Model with maternal effect - results
1 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

2 ∗ E S T I M A T E S I N F O R M A T I O N ∗

3 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

4
5 Wed Oct 22 1 1 : 1 1 : 1 9 2008 CPU t ime used : 0 : 0 0 : 0 0
6
7 AG Log l i k e l i h o o d : 1845 .8601 s t a t u s : 1 a t i t e r a t i o n : 27 / 27
8
9

10 −−−−−−−−−−−−−−−−−−−−−−−−−−−−− M a t r i c e s : NATURAL −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

11 Type : R Leve l : 1 hys No . : 39 P a t t e r n : T
12 1 .69934
13
14 Type : A Leve l : 1 an i ma l | dam No . : 1428 P a t t e r n : T T
15 8 .40442 −0.58809
16 0 .46936
17
18 Type : E Leve l : 1 r e s i d u a l No . : 543 P a t t e r n : T
19 4 .22685

The coding as a preparation for VCE is different with maternal effects models. Remember, that
there are the two effects animal and dam for any one record sitting in two columns in the data
file. Ordinary coding would sort all entries in the animal column and sort them from 1 to n.
Then, and independently, the dam column would also be sorted from 1 to total number of dams.
If we have a record for animal CLARA and CLARA has a few years later an offspring with a
record, then CLARA will show up once in the animal column and once in the dam column of
its offspring. Standard i.e. independent coding of the two columns will most likely result in
different codes for CLARA as an animal and CLARA as a dam. This is wrong and needs to be
prevented. Thus, if you use your own coding software, you need to ensure that you put both
columns into one “pot” and then sort and code. In PEST you can use a coding feature from
sire/dam models. The corresponding parameter file is given in Listing 4.15. As can be seen
from line 2 in Listing 4.15 both effects (here sire and dam) originating in two columns are coded
jointly. This is exactly what we need to do for maternal effects models.
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Listing 4.15: Coding for maternal effect
1 RELATIONSHIP
2 r e l _ f o r s i r e dam
3 i n f i l e = ’ . . / d a t a / de_mpa . ped ’
4 i n p u t
5 s i r e
6 m_p
7 f_p
8 DATA
9 INFILE = ’ . . / d a t a / de_mpa . da t ’

10 INPUT [ VAR_NAME MAXLEVEL START_COLUMN VAR_LENGTH DECIMAL ]
11 s l _ w t 0
12 month 140
13 h e r d s 150
14 s i r e 1200
15 dam 1200
16 l i t t e r 400
17 d a i l y _ g a i n 0
18 MODEL
19
20 d a i l y _ g a i n = s i r e dam h e r d s month l i t t e r

The standard procedure is to have the same traits in both the direct and maternal additive genetic
effect. This restriction does not apply to VCE: the user may specify different traits in maternal
and direct (and, hopefully, be able to justify this).

4.10 Example with fixed regression nested

Regressions can easily be nested in effects as specified in Algorithm 4.1. The linear regression
on wt100 for bf100 is nested with in breeds. As a result one regression curve will be fitted to
each breed.

4.11 Setting up Random Regression Models

In this section we shall deal with the class of Random Regression Model. In particular the
interpretation of the parameter estimates are not as straight forward as in the other models.

4.11.1 Body mass in Golden Hamsters

Introduction into the theory demonstrated for this example In this paragraph we shall
deal with theoretical aspects of Random Regression Model explained in the context of a small
dataset which has been generated from a small lab population of Golden Hamsters (Krause,
2008). There are body weight records available on 314 animals from 57 litters taken at 7 different
dates. While the amount of data is certainly not sufficient for proper genetic evaluation, it serves
well for demonstration purposes.
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Algorithm 4.1 Effect breed as main effect and nesting effect for linear regression
Comment Boars Slovenia - Podgrad
Data
datfile = ’../test/data/b100po.dat’
format = ’(7f12.5,5f8.0)’
dep = tp_r30 tp_3060 tp_60100 fce_3060 fce_60100 bf_100
indep = wt100 seas breed litter animal;

pedfile = ’../test/data/b100po.ped’
format = ’(4i10)’
link = animal;

Covariance
animal;
litter;

Model
bf_100 = seas+litter+animal+[1, p1(wt100)]breed;
tp_r30 tp_3060 tp_60100 fce_3060 = seas+ litter+animal+breed;

System
non_zero = 1000000
total = 3000000

End

The lab animals were produced in seven consecutive batches (matings) over a period of 2 years,
which we shall refer to as “batches”. Body weight was recorded weekly from day 28 through 70
in the live of the hamsters. If the average weight is plotted over weeks and linear or quadratic
growth can be expected. Likely fixed effects are the batches, the litter size as a continuous
covariable and a sex effect. Furthermore, we need to consider the fact that all offspring from one
dam were raised in the same litter environment, and that we have repeated measurements for
each animal. As a result, the random component Dam and Animal have to be part of the model.

Let yi j(t) be the performance record of animal j with dam i at time t. Further, we assume a
linear growth during the measurement phase. If all random components are taken relative to the
population mean we get the following model equation:

yi j(t) = (β0 + d0i + a0i j)x0 + (β1 + d1i + a1it)x1(t) + ei j(t) (4.1)

with x0 = 1 and x1(t) = t. Further, β0 and β1 are fixed and population specific, while d0i and d1i

are random maternal and a0i j and a1i j random animal specific regression coefficients (each with
an expected value of zero). If the model (4.1) only contains the random intercepts d0iand a0i j,
then the litter common environmental variance and the variance of the animal effects need to be
considered age independent. The random slopes d1iand a1i jresult in the corresponding variance
components of the dam and animal effects showing an age dependence.

(It should be noted that the dam effects will contain genetic components apart from the common
environmental effects while the animal effects are not solely made up of additive genetic effects
if no pedigree information is used.)
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Nesting the fixed regression coefficients within sex the VCE representation of equation 4.1 be-
comes:

y = [1, p1(t)]sex + [1, p1(t)]dam + [1, p1(t)]anim (4.2)

Model equation (4.1) is an appropriate description of repeated body measurements if growth is
only linear. Usually, higher order polynomials are used to describe this process, with a minimum
of three. In this case, four covariables would be required: x0 = 1; x1 = t; x2 = t2and x4 = t3.

Let x(t) = (x0(t), x1(t), · · · , xn(t))′ be a vector of (n + 1) covariables (as an example: xr = tr or in
a standardized version: xr = (t/tmax)r with r = 0, · · · , n). With pedigree information animal spe-
cific effects can be partitioned into additive genetic and permanent environmental variance. Let
β = (β0, · · · , βn)′ be the vector of fixed regression coefficients and di = (d0i, · · · , dni)′ the vector
of regression coefficients of mother i. Further, let ai j = (a0i j, · · · , ani j)′ and pi j = (p0i j, · · · , pni j)′

den be the vector of additive genetic and permanent environmental regression coefficients, resp.,
of animal j within dam i. The covariance matrices of these vectors would then be:

Var(di) = Kd; Var(ai j) = Ka und Var(pi j) = Kp (4.3)

Only, the additive genetic regression coefficients of different animals are considered correlated.
The dam component is not getting further decomposed into additive genetic maternal and com-
mon environmental effects. Look at coefficients a, d and p across animals the following applies:

Var(d) = Id ⊗ Kd; Var(a) = A ⊗ Ka und Var(p) = Ip ⊕ Kp (4.4)

In formula (4.4) Idand Ia are identity matrices while A is the numerator relationship matrix.

Using the above expressions the model (4.1) for repeated measurements can be expanded in the
following way:

yi j(t) = x′(t)β + x′(t)di + x′(t)ai j + x′(t)pi j + ei j(t) (4.5)

Following our basic model in quantitative genetics for partitioning the variance of an observation
into an additive genetic and environmental component yi j = gi j + ui j we get:

gi j(t) = x′(t)ai j

ui j(t) = x′(t)di + x′(t)pi j + ei j(t)
(4.6)

Thus, the additive genetic variance can be computed as:

σ2
g(t) = Var(x′(t)ai j)

= x′(t)Var(ai j)x(t)
= x′(t)Kax(t)
=

∑
xi(t) · x j(t) · Ka{i, j}

(4.7)

The Variance function at time t and the covariance function at t1 and t2 is then:

Var(y(t)) = x′(t)Kd x(t) + x′(t)Kax(t) + x′(t)Kpx(t) + σ2
e

cov(y(t1), y(t2)) = x′(t1)Kd x(t2) + x′(t1)Kax(t2) + x′(t1)Kpx(t2)
(4.8)
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4.11 Setting up Random Regression Models

Based on the vectors of covariables x(t) and matrices Kd,Ka and Kp heritability-curves and
genetic correlations can be easily determined. For instance:

h2(t) =
σ2

g(t)

σ2
y(t)

mit σ2
y(t) = Var(y(t)) (4.9)

With higher order polynomials orthogonality improves convergence. For instance the Legendre
polynomials are orthogonal over the interval [−1, 1]. As a consequence, the independent variable
– let’s say “age” as from the dataset – has to be transformed as:

t =
2.0 · (age − tmin)

(tmax − tmin)
− 1.0; (4.10)

The Legendre polynomials as used in VCE have the form (up to order 4):

x0(t) =

√
1
2

x1(t) =

√
3
2 · t

x2(t) =

√
5
2 ·

1
2 · (3 · t

2 − 1)

x3(t) =

√
7
2 ·

1
2 · (5 · t

3 − 3 · t)

x4(t) =

√
9
2 ·

1
8 · (35 · t4 − 30 · t2 + 3)

(4.11)

The necessary transformations are done by VCE. Then:

plg1(t) = (x0, x1)′

plgn(t) = (x0, x1, · · · , xn)′
(4.12)

Thus, in the VCE parameter file model (4.1) expanded by a permanent environmental effect and
using Legendre polynomial can be written as:

y = [plg1(t)]sex + [plg1(t)]dam + [plg1(t)]anim + [plg1(t)]perm (4.13)

Coding of data Before input data can be used in VCE all fixed and random effects need to be
recoded. This means, that all class effects need to start with a numerical 1 and code the levels in
an ascending order with no “holes”. This can be conveniently done by PEST. The corresponding
PEST parameter file is given in 4.17.
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Listing 4.16: Input Data ( lab_dat.txt)
1 0090 w 2 W03 /31 2 0090 4 1 . 0 8 . 0 2 8 . 0 28
2 0091 m 2 W03 /22 2 0091 5 2 . 0 8 . 0 2 8 . 0 28
3 0092 w 2 W03 /36 2 0092 5 7 . 0 9 . 0 2 8 . 0 28
4 0093 m 2 W03 /21 2 0093 5 3 . 0 7 . 0 2 8 . 0 28
5 0096 m 2 W03 /26 2 0096 5 1 . 0 1 1 . 0 2 8 . 0 28
6 0098 m 2 W03 /36 2 0098 5 7 . 0 9 . 0 2 8 . 0 28

Listing 4.17: Pest parameter file coding (p_rrm01.job)
1 comment
2 h a m s t e r d a t a
3 r e l a t i o n s h i p
4 r e l _ f o r anim
5 i n f i l e = ’ l a b _ p e d . t x t ’
6 o u t f i l e = ’ ped . cod ’ [ t e x t ]
7 c . . . . . . . . . . ’ 1 2 3 4 5 6 7 8 ’
8 u n d e f i n e d = ’0 ’
9 i n p u t

10 anim 1 ,8
11 m_p 9 ,8
12 f_p 18 ,8
13 d a t a
14 i n f i l e = ’ l a b _ d a t . t x t ’
15 o u t f i l e = ’ d a t . cod ’ [ t e x t ]
16 INPUT [ VAR_NAME MAXLEVEL START_COLUMN VAR_LENGHT DECIMAL]
17 anim 1000 1 8
18 sex 10 9 3
19 s e r i e 10 12 3
20 dam 60 15 8
21 perm 1000 23 8
22 km 0 31 6
23 wg 0 37 6
24 age 0 43 6
25 week 10 49 6
26 c . . g i v e s t a t i s t i c a l model
27 model
28 km = wg age sex s e r i e week dam perm anim
29 t r a n s f o r m a t i o n
30 t r e a t e d _ a s _ m i s s i n g
31 km none 0 . 0 none
32 ve
33 1 . 0
34 vg
35 v g _ f o r anim
36 1 . 0
37 v g _ f o r dam
38 1 . 0
39 v g _ f o r perm
40 1 . 0
41 c . . do n o t need conve rged r e s u l t s :
42 s o l v e r
43 m a x _ i t e r =2
44 i o c [ s t o p = . 0 1 ]
45 s y s t e m _ s i z e
46 non_ze ro =1000000
47 p r i n t o u t
48 o u t f i l e = ’ p_rrm01 . l i s t ’
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4.11 Setting up Random Regression Models

Legendre polynomials and the computation of variance functions In the following we
shall continue to use the model defined above 4.1. Further fixed effects are added to model (4.13).
Growth is modeled with in sex and batches by a second order polynomial. The effect of litter
size is included through a covariable (linear regression) nested within weeks. For convergence
reasons only a zero order Legendre is fitted to the maternal component as describe in the VCE
parameter file4.19.

The variance functions are computed according to formula (4.8) using the SAS IML matrix
package. The simple program code is given in Listing 4.20.

Listing 4.18: Input Data (dat.cod)
1
2 KM WG AGE ANIM SEX SERIE DAM PERM WEEK
3 0.41000E+02 0 .80000E+01 0 .28000E+02 6 2 1 14 1 1
4 0 .52000E+02 0 .80000E+01 0 .28000E+02 7 1 1 5 2 1
5 0 .57000E+02 0 .90000E+01 0 .28000E+02 8 2 1 20 3 1
6 0 .53000E+02 0 .70000E+01 0 .28000E+02 9 1 1 4 4 1

Listing 4.19: VCE parameter file (rrm01.job)
1 comment L a b o r t i e r e H a m s t e r d a t e n
2
3 DATA
4 d a t f i l e = ’ d a t . cod ’ f o r m a t = ’ (3 f12 . 0 , 6 f8 . 0 ) ’
5 dep= km
6 i n d e p= wg age anim sex s e r i e dam perm week ;
7 p e d f i l e = ’ ped . cod ’ f o r m a t = ’ (4 i 1 0 ) ’ l i n k =anim ;
8
9 COVARIANCE

10 anim ;
11 perm ;
12 dam ;
13 c s t a r t _ a s c i i = ’ c o v _ s t a r t . t x t ’ ;
14
15 MODEL
16 km = [ p lg2 ( age ) ] sex [ p lg2 ( age ) ] s e r i e [ 1 , p1 ( wg ) ] week
17 [ p lg1 ( age ) ] anim [ p lg1 ( age ) ] perm [ p lg0 ( age ) ] dam ;
18 c s c a l e x non ;
19 c s c a l e y non ;
20
21 SYSTEM
22 non_ze ro = 15000
23 t o t a l = 1100000;
24
25 OUTPUT
26 debug = . t r u e .
27 c o v f i l e = ’ cov_rrm01 . t x t ’ f o r m a t = ’ (10 f12 . 5 ) ’ form = ’ f u l l ’ ;
28 s o l u t i o n s = ’ s o l _ r r m 0 1 . t x t ’ f o r m a t = ’ (10 f12 . 5 ) ’
29 END
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Listing 4.20: SAS-File to compute the variance function for RRM01
1 / ∗ c a l c u l a t i o n o f v a r i a n c e f u n c t i o n s ∗ /

2 Proc iml ;
3 s t a r t main ;
4 f i l e n a m e o u t ’ r rm03_var . t x t ’ ;
5 f i l e o u t ;
6 dim =2; x=shape ( 0 , dim , 1 ) ;
7 c r e a t e h a m s t e r v a r { age , t , vp , vd , va , ve , vy } ;
8 tmin =28;
9 tmax =70;

10 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

11 / ∗ R e s u l t a t e aus VCE ∗ /

12 Kd={42 .3793} ;
13 Ka={18.6858 6 . 9 1 9 4 ,
14 6 .9194 4 . 7 5 3 0 } ;
15 Kp={59.0451 1 4 . 2 4 7 2 ,
16 14 .2472 6 . 5 6 2 3 } ;
17 ve =6 .60635 ;
18 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

19 na=nrow ( Ka ) ; nd=nrow ( Kd ) ; np=nrow ( Kp ) ;
20 do age= tmin t o tmax ;
21 t = 2 . 0 ∗ ( age− tmin ) / ( tmax− tmin ) −1 . 0 ;
22 x [ 1 ] = s q r t ( 0 . 5 ) ;
23 x [ 2 ] = s q r t ( 3 / 2 ) ∗ t ;
24 va = 0 . 0 ; vp = 0 . 0 ; vd = 0 . 0 ;
25 do i =1 t o na ;
26 do j =1 t o na ;
27 va=va+Ka [ i , j ]∗ x [ i ]∗ x [ j ] ;
28 end ;
29 end ;
30 do i =1 t o np ;
31 do j =1 t o np ;
32 vp=vp+Kp [ i , j ]∗ x [ i ]∗ x [ j ] ;
33 end ;
34 end ;
35 do i =1 t o nd ;
36 do j =1 t o nd ;
37 vd=vd+Kd [ i , j ]∗ x [ i ]∗ x [ j ] ;
38 end ;
39 end ;
40 vy=vd+va+vp+ve ;
41 p u t ( age ) 4 . 0 ( va ) 1 2 . 5 ( vp ) 1 2 . 5 ( vd ) 1 2 . 5 ( ve ) 1 2 . 5 ( vy ) 1 2 . 5 ;
42 append ;
43 end ;
44 c l o s e f i l e o u t ;
45 f i n i s h ;
46 run ;
47 p roc g p l o t d a t a=h a m s t e r ;
48 p l o t vd∗ age va ∗ age vp∗ age ve ∗ age vy∗ age / o v e r l a y ;
49 run ;

90



4.11 Setting up Random Regression Models

Listing 4.21: Results from VCE (p_rrm01.job)
1 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

2 ∗ E S T I M A T E S I N F O R M A T I O N ∗

3 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

4 Thu Aug 07 1 0 : 4 8 : 2 2 2008 CPU t ime used : 0 : 0 0 : 2 6
5 AG Log l i k e l i h o o d : −2958.5107 s t a t u s : 1 a t i t e r a t i o n : 90 / 90
6 −−−−−−−−−−−−−−−−−−−−−−−−−−−−− M a t r i c e s : NATURAL −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

7 Type : A Leve l : 1 anim No . : 479 P a t t e r n : T T
8 18 .6858 6 .9194
9 6 .9194 4 .7530

10 Type : R Leve l : 1 perm No . : 314 P a t t e r n : T T
11 59 .0451 14 .2472
12 14 .2472 6 .5623
13 Type : R Leve l : 1 dam No . : 57 P a t t e r n : T
14 42 .3793
15 Type : E Leve l : 1 r e s i d u a l No . : 2198 P a t t e r n : T
16 6 .60635
17 −−−−−−−−−−−−−−−−−−−−−−−−−−− M a t r i c e s : P h e n o t y p i c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

18 180 .365 −−−

19 −−− −−−

20 −−−−−−−−−−−−−−−−−−−−−−−−−−−−− M a t r i c e s : RATIOS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

21 Type : R Leve l : 1 dam
22 0 .23496
23 Type : R Leve l : 1 perm
24 0 .32736 0 .72379
25 0 .72379 0 .03638
26 Type : A Leve l : 1 anim
27 0 .10360 0 .73422
28 0 .73422 0 .02635
29 Type : E Leve l : 1 r e s i d u a l
30 0 .036628
31 −−−−−−−−−−−−−−−−−−−−−− M a t r i c e s : STD_ERR of components −−−−−−−−−−−−−−−−−−−−−−−−

32 Type : A Leve l : 1 anim
33 35 .4774 7 .0991
34 7 .0991 2 .3134
35 Type : R Leve l : 1 perm
36 14 .7511 3 .4160
37 3 .4160 1 .2898
38 Type : R Leve l : 1 dam
39 13 .2896
40 Type : E Leve l : 1 r e s i d u a l
41 0 .22849
42 −−−−−−−−−−−−−−−−−−−−−−−− M a t r i c e s : STD_ERR of r a t i o s −−−−−−−−−−−−−−−−−−−−−−−−−−

43 Type : R Leve l : 1 dam
44 0 .075797
45 Type : R Leve l : 1 perm
46 0 .10673 0 .11529
47 0 .11529 0 .00726
48 Type : A Leve l : 1 anim
49 0 .18827 0 .70696
50 0 .70696 0 .01264
51 Type : E Leve l : 1 r e s i d u a l
52 0 .4186E−02

Scaling and computation of standard errors The VCE run from jobfile RRM01 in Listing
4.19 implies scaling of traits and covariables. As VCE is a package for computing covariance
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components, these are scaled back on output. If, however, the regression coefficients are to be
plotted for each sex, those coefficients have to be on the original scale. This can be done by
starting VCE again without scaling and using starting values that are close to the final results.

The standard errors produced by VCE are based on the observed Hessian matrix. This means,
that the approximation is done through the 2nd derivatives of the likelihood with respect to the
parameters. However, only the first derivatives are computed analytically, while the 2nd deriva-
tives are approximated during the iteration by the difference quotient of the first derivatives.

As a result, the predefined starting values have to be substantially different from the optimal
solution (under scaling). This can be done by increaing the values on the diagonal of the covari-
ance matrices and reducing the offdiagonals or to use results from a VCE with less fixed factors.
Uncomment the appropriate lines in the Model and Covariance section of Jobfile RRM01 (List-
ing 4.19) to get a run without scaling. The starting values from Listing 4.22 results in the output
in Listing 4.23.

Remark 1: parameter estimates in tables 4.21 and 4.23 belong to different starting values. As
indicated by the status 1 for both runs, convergence was reached and the two sets are
practically identical. In contrast, the estimated standard errors are in part quite different.
This is the result from different path ways that the two runs followed during iteration,
a result that will be particularly pronounced in small samples. If the status is reported
as 1, one can at least be sure that a local maximum has been reached. Theoretically,
repeated runs with different starting values reaching the same optimum would ensure, that
the optimum is indeed a global one. However, at this point we are not aware that ever
two different sets of solutions were found with status 1. The local maximum reported
by Kovac and Groeneveld [5] were based on the simplex algorithm which is much less
efficient than the BFGS algorithm based on first derivatives as used in VCE.

Remark 2: Models with polynomials of different order cannot be compared on the basis of
the likelihood ratio test (LRT). When computing the likelihood values for optimization
VCE in the case of a RRM drops the term rank(Ka) · det(A) because it is not required
for optimization and difficult to compute. The rank of matrix Ka equals the order of the
polynomial plus 1, and A is the numerator relationship matrix. Accordingly, the differ-
ence between 2 likelihood values resulting from polynomials of order n1and n2 are also
dependent on the expression (n1 − n2) · det(A). As a result, a LRT can only be done for
models where n1 = n2or A equals the identity matrix.

Listing 4.22: Starting values (rrm02.job)
1 l i n k =anim form = ’ f u l l ’ t y p e = ’ na t ’
2 8 3 . 0 3 . 0
3 3 . 0 5 . 0
4 l i n k =perm form = ’ f u l l ’ t y p e = ’ na t ’
5 4 2 . 0 1 2 . 0
6 1 2 . 0 7 . 0
7 l i n k =dam form = ’ f u l l ’ t y p e = ’ na t ’
8 3 3 . 0
9 l i n k = r e s i d u a l form = ’ f u l l ’ t y p e = ’ na t ’

10 7 . 0
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Listing 4.23: Results from VCE (rrm02.job)
1
2 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

3 ∗ E S T I M A T E S I N F O R M A T I O N ∗

4 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

5 Thu Aug 07 1 0 : 5 2 : 4 6 2008 CPU t ime used : 0 : 0 0 : 2 7
6 AG Log l i k e l i h o o d : 8953 .8733 s t a t u s : 1 a t i t e r a t i o n : 92 / 92
7 −−−−−−−−−−−−−−−−−−−−−−−−−−−−− M a t r i c e s : NATURAL −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

8 Type : A Leve l : 1 anim No . : 479 P a t t e r n : T T
9 18 .6881 6 .9088

10 6 .9088 4 .7498
11 Type : R Leve l : 1 perm No . : 314 P a t t e r n : T T
12 59 .0433 14 .2520
13 14 .2520 6 .5630
14 Type : R Leve l : 1 dam No . : 57 P a t t e r n : T
15 42 .3739
16 Type : E Leve l : 1 r e s i d u a l No . : 2198 P a t t e r n : T
17 6 .60637
18 −−−−−−−−−−−−−−−−−−−−−−−−−−− M a t r i c e s : P h e n o t y p i c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

19 180 .346 −−−

20 −−− −−−

21 −−−−−−−−−−−−−−−−−−−−−−−−−−−−− M a t r i c e s : RATIOS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

22 Type : R Leve l : 1 dam
23 0 .23496
24 Type : R Leve l : 1 perm
25 0 .32739 0 .72400
26 0 .72400 0 .03639
27 Type : A Leve l : 1 anim
28 0 .10362 0 .73330
29 0 .73330 0 .02634
30 Type : E Leve l : 1 r e s i d u a l
31 0 .036632
32 −−−−−−−−−−−−−−−−−−−−−− M a t r i c e s : STD_ERR of components −−−−−−−−−−−−−−−−−−−−−−−−

33 Type : A Leve l : 1 anim
34 39 .4948 6 .1771
35 6 .1771 2 .1753
36 Type : R Leve l : 1 perm
37 16 .1943 3 .1503
38 3 .1503 1 .2882
39 Type : R Leve l : 1 dam
40 12 .9375
41 Type : E Leve l : 1 r e s i d u a l
42 0 .22232
43 −−−−−−−−−−−−−−−−−−−−−−−− M a t r i c e s : STD_ERR of r a t i o s −−−−−−−−−−−−−−−−−−−−−−−−−−

44 Type : R Leve l : 1 dam
45 0 .077798
46 Type : R Leve l : 1 perm
47 0 .11755 0 .10028
48 0 .10028 0 .00723
49 Type : A Leve l : 1 anim
50 0 .20945 0 .67359
51 0 .67359 0 .01189
52 Type : E Leve l : 1 r e s i d u a l
53 0 .4416E−02

93



4 Examples and Use Cases

4.11.2 Daily Gain in Bulls

Model definition with Legendre polynomials Body weights on more than 6000 bulls from
the Czech Fleckvieh were available for this investigation with an average of 12 measurements
per bull between 12 and 420 days of age. Data collection was carried out over a period of 20
years at 7 test stations. daily gain was computed on the basis of three successive weighings.
The total test period from day 12 – 420 was subdivided into 8 equidistant blocks of 50 days, to
be able to a multi trait analysis and also use a random regression model (see KREJČOVÁ, u.a.,
2006). That daily gain within each of the 8 blocks was chosen, which was closest to the middle
of the time span. After editing each bull had between 4 and 8 repeated measurements in daily
gain.

HYS classes were used to capture the effects of station, year and season, the latter consisting of
three months starting with December. Test month instead of test day was used as an environ-
mental effect as daily gain was computed based on three consecutive measurements. A graphical
analysis revealed a quadratic trend on age. Furthermore, as the growth curves differed among
HYS classes, they were nested within these HYS groups.

Listing 4.24: VCE parameter file RRM03
1 COMMENT d a i l y g a i n o f b u l l s
2
3 DATA
4 d a t f i l e = ’ d a t 0 3 . t x t ’
5 f o r m a t = ’ (2 F12 . 0 , 3 F8 . 0 ) ’
6 dep = g a i n
7 i n d e p = age anim hys3 perm ;
8 p e d f i l e = ’ ped03 . t x t ’ f o r m a t = ’ (4 I10 ) ’ l i n k = anim ;
9

10 MODEL
11 g a i n = [ p lg2 ( age ) ] hys3 + [ p lg2 ( age ) ] anim + [ p lg2 ( age ) ] perm ;
12
13 COVARIANCE
14 anim ;
15 perm ;
16
17 SYSTEM
18 non_ze ro = 1500000
19 t o t a l = 11000000;
20
21 OUTPUT
22 c o v f i l e = ’ cov_rrm03 . t x t ’ f o r m a t = ’ (10 f12 . 5 ) ’ form = ’ f u l l ’ ;
23 s o l u t i o n s = ’ s o l _ r r m 0 3 . t x t ’ f o r m a t = ’ (10 f12 . 5 ) ’
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Listing 4.25: Results from VCE (rrm03.job)
1 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

2 ∗ E S T I M A T E S I N F O R M A T I O N ∗

3 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

4 Wed Aug 06 1 2 : 1 4 : 2 7 2008 CPU t ime used : 0 : 0 3 : 1 5
5 AG Log l i k e l i h o o d : 22419 .2665 s t a t u s : 1 a t i t e r a t i o n : 70 / 70
6 −−−−−−−−−−−−−−−−−−−−−−−−−−−−− M a t r i c e s : NATURAL −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

7 Type : A Leve l : 1 anim No . : 7029 P a t t e r n : T T T
8 5931 .40 341 .91 −1460.85
9 341 .91 2417 .14 −797.11

10 −1460.85 −797.11 2400 .37
11 Type : R Leve l : 1 perm No . : 6374 P a t t e r n : T T T
12 2326 .94 −342.17 1214 .44
13 −342.17 4887 .83 1739 .99
14 1214 .44 1739 .99 1394 .73
15 Type : E Leve l : 1 r e s i d u a l No . : 32273 P a t t e r n : T
16 30287 .8
17 −−−−−−−−−−−−−−−−−−−−−−−−−−− M a t r i c e s : P h e n o t y p i c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

18 51038 .6 −−− −−−

19 −−− −−− −−−

20 −−− −−− −−−

21 −−−−−−−−−−−−−−−−−−−−−−−−−−−−− M a t r i c e s : RATIOS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

22 Type : R Leve l : 1 perm
23 0 .04559 −0.10146 0 .67412
24 −0.10146 0 .09577 0 .66641
25 0 .67412 0 .66641 0 .02733
26 Type : A Leve l : 1 anim
27 0 .11621 0 .09030 −0.38716
28 0 .09030 0 .04736 −0.33093
29 −0.38716 −0.33093 0 .04703
30 Type : E Leve l : 1 r e s i d u a l
31 0 .59343
32 −−−−−−−−−−−−−−−−−−−−−− M a t r i c e s : STD_ERR of components −−−−−−−−−−−−−−−−−−−−−−−−

33 Type : A Leve l : 1 anim
34 841 .877 269 .016 470 .207
35 269 .016 640 .895 375 .295
36 470 .207 375 .295 505 .526
37 Type : R Leve l : 1 perm
38 776 .808 232 .613 444 .509
39 232 .613 706 .888 375 .116
40 444 .509 375 .116 490 .210
41 Type : E Leve l : 1 r e s i d u a l
42 313 .088
43 −−−−−−−−−−−−−−−−−−−−−−−− M a t r i c e s : STD_ERR of r a t i o s −−−−−−−−−−−−−−−−−−−−−−−−−−

44 Type : R Leve l : 1 perm
45 0 .01523 0 .07428 0 .16989
46 0 .07428 0 .01346 0 .14907
47 0 .16989 0 .14907 0 .00952
48 Type : A Leve l : 1 anim
49 0 .01611 0 .07148 0 .15012
50 0 .07148 0 .01247 0 .16230
51 0 .15012 0 .16230 0 .00973
52 Type : E Leve l : 1 r e s i d u a l
53 0 .5585E−02

Computation of the h2- function Listing 4.26 demonstrate how the SAS procedure IML can
be used to compute the h2- function. Only simple DO loops are required which should make
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translation into other programming languages straight forward.

Listing 4.26: SAS-File for coumputing the h2 - function for RRM03
1 Proc iml ;
2 s t a r t main ;
3 f i l e n a m e o u t ’ r r m 0 3 _ h e r i . t x t ’ ;
4 f i l e o u t ;
5 dim =3; tmin =49; tmax =393;
6 x=shape ( 0 , dim , 1 ) ;
7 c r e a t e g a i n v a r { age , h2 , vg , vp , ve , vy } ;
8 / ∗ r e s u l t s from VCE ( rrm03 . j o b ) ∗ /

9 ge={ 5931 .43 341 .94 −1460.82 ,
10 341 .94 2417 .16 −797.16 ,
11 −1460.82 −797.16 2 4 0 0 . 3 9 } ;
12 ng=nrow ( ge ) ;
13 pe={ 2326 .90 −342.19 1 2 1 4 . 4 2 ,
14 −342.19 4887 .83 1 7 4 0 . 0 2 ,
15 1214 .42 1740 .02 1 3 9 4 . 7 6 } ;
16 np=nrow ( pe ) ;
17 ve =30287 .8 ;
18 do age= tmin t o tmax ;
19 / ∗ t r a n s f o r m a t i o n ∗ /

20 t = 2 . 0 ∗ ( age− tmin ) / ( tmax− tmin ) −1 . 0 ;
21 x [1 ]= s q r t ( 0 . 5 ) ;
22 x [2 ]= s q r t ( 3 / 2 ) ∗ t ;
23 x [3 ]= s q r t ( 5 / 2 ) ∗ ( 3 / 2 ∗ t ∗∗2 −0 . 5 ) ;
24 vg = 0 . 0 ;
25 do i =1 t o ng ;
26 do j =1 t o ng ;
27 vg=vg+ge [ i , j ]∗ x [ i ]∗ x [ j ] ;
28 end ;
29 end ;
30 vp = 0 . 0 ;
31 do i =1 t o np ;
32 do j =1 t o np ;
33 vp=vp+pe [ i , j ]∗ x [ i ]∗ x [ j ] ;
34 end ;
35 end ;
36 vy=vg+vp+ve ;
37 h2=vg / vy ;
38 p u t ( age ) 4 . 0 ( vg ) 1 2 . 5 ( vp ) 1 2 . 5 ( ve ) 1 2 . 5 ( h2 ) 9 . 5 ;
39 append ;
40 end ;
41 c l o s e f i l e o u t ; f i n i s h ;
42 run ;
43 p roc g p l o t d a t a=g a i n ;
44 a x i s 1 o r d e r =(49 t o 393 by 2 0 ) ;
45 p l o t h2∗ age ;
46 run ;
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4.11.3 Feed Intake in Beef

In this example we analyze beef data from a trial with individual feed intakes measured. The
test starts right after weaning after around 7 months plus a 4 week adaptation period. The feed
intake and the body weight in kg of the animal are recorded each week. The total test lasts 72
weeks. The first few lines of the data file are given in table 4.27.

Listing 4.27: data file for feed intake
1 FI AGE DAMAGE LENG CCG SEQ ANIMAL
2 0 .50000E+02 0 .19800E+03 0 .10600E+03 1 139 1 6921 1
3 0 .74000E+02 0 .21900E+03 0 .10600E+03 2 139 1 6921 1
4 0 .75000E+02 0 .24000E+03 0 .10700E+03 3 139 1 6921 1
5 0 .78000E+02 0 .25400E+03 0 .10700E+03 4 139 1 6921 1
6 0 .64000E+02 0 .27500E+03 0 .10800E+03 5 139 1 6921 1
7 0 .50000E+02 0 .25400E+03 0 .10600E+03 1 81 2 6923 1
8 0 .58000E+02 0 .27500E+03 0 .10700E+03 2 81 2 6923 1
9 0 .75000E+02 0 .29600E+03 0 .10800E+03 3 81 2 6923 1

10 0 .78000E+02 0 .31000E+03 0 .10800E+03 4 81 2 6923 1

What do we want to do?

1. we want to get BLUP for each animal for every possible week (or point in time during the
test)

2. we assume that the residual variances change over the course of the test

While a function can be fit in VCE for a random component (i.e. getting a BLUP as a function
of time), this cannot be done for residuals at this point. Instead, for the residual (co)variances the
measurements of independent variable have to be grouped in classes where the time span within
a class is sufficiently small that a constancy of variance can be assumed while on the other side
not too many classes are generated (the impact of this is discussed later).

To approach a complete random regression analysis we shall first start with a simple model
which uses – for demonstration purposes only – linear regressions for the random components.

Genetic analysis for early growth (first 6 weeks) In our sample dataset we want to do
a genetic evaluation for the first 6 months only. If we plot the growth over the first 6 weeks
we get a straight line. Thus, clearly the relationship between feed intake and age is sufficiently
described by a linear function. Using the VCE syntax for this the animal effect in the model
would look like:

feed_intake = .... [p1(age)]animal

This implies a linear regression of feed intake on age nested within each animal, i.e. we get
a regression coefficient for each animal. Now what does that mean? The animal component
is interpreted (on the basis of our model definition) as the additive genetic effect. What these
values mean we shall discuss later.
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Listing 4.28: VCE Parameter file (linear RR)
1 comment r r − t e s t 1
2 f e e d i n t a k e i n b e e f c a t t l e w i th weekly w e i g h i n g s
3 d a t a
4 d a t f i l e = ’ f i_ma10000 . da t ’
5 depend = f e e d _ i n t a k e
6 i n d e p = age damage l e n g an i ma l pe group_by pe ;
7 p e d f i l e = ’ f i_ma10000 . ped ’ f o r m a t = ’ (4 I10 ) ’ l i n k = an im a l ;
8
9 model

10 f e e d _ i n t a k e = i n t p2 ( age ) [ 1 , p1 ( age ) ] pe [ 1 , p1 ( age ) ] an ima l / c f = CLASS( l e n g ) ;
11
12 c o v a r i a n c e
13 a n i ma l ;
14 pe ;
15 sys tem
16 non_ze ro = 281490
17 t o t a l = 7525354
18 Outpu t
19 c o v f i l e ;
20 End

Listing 4.29: VCE Parameter file (plg2)
1 comment r r − t e s t 3
2 f e e d i n t a k e i n b e e f c a t t l e w i th weekly w e i g h i n g s
3 Legendere
4
5 d a t a
6 d a t f i l e = ’ f i_ma10000 . da t ’
7 depend = f i
8 i n d e p = age damage l e n g an i ma l pe group_by pe ;
9 p e d f i l e = ’ f i_ma10000 . ped ’ f o r m a t = ’ (4 I10 ) ’ l i n k = an im a l ;

10 model
11 f i = i n t p2 ( age ) p lg2 ( age ) ] pe [ p lg2 ( age ) ] an ima l / c f = CLASS( l e n g ) ;
12
13 c o v a r i a n c e
14 a n i ma l ;
15 pe ;
16 sys tem
17 non_ze ro = 500000
18 t o t a l = 7525354
19
20 Outpu t
21 c o v f i l e ;
22 End

4.11.4 Coding requirements

In random regression models data need to be coded in a different manner. Relevant parts in this
context are the statements group_by and /cd=class(leng).

The latter statement puts the measurements along the time trajectory (here we have AGE) into
separate residual variances. This means, that the age 198 (first record in the data file in Listing
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4.27) into the class 1, i.e. the first residual variance as indicated by the 1 in LENG. Likewise,
the fourth record places the age record of 254 days into the 4th variance as given by the 4 under
LENG.

How are these columns set up? Clearly, the AGE column is obvious: it is the age of the animal at
which the weight was recorded. To place a record into the correct position in the residual covari-
ance matrix the column LENG (or whatever you may call this) needs to indicate the class that
this age measurement is placed into. In our sample dataset we have data from the first 5 weeks
only. Accordingly. we have measurements taken every three weeks (with a little variation).
What is important to notice, is that there must not be more than one measurement per animal
in one such LENG class. If you do have this, VCE will stop with an appropriate message. The
LENG class is coded just like any other class effect and needs therefore be coded as 1,2,3...n.

4.11.5 Running the job

If we run parameter file in table 4.28 we get the results given in Listing 4.30. According to
the model statement in Listing 4.28, we get three covariance matrices: a 2 x 2 matrix for the
permanent environmental effect (pe) and the animal effect (which is considered additive genetic)
and a 5x5 for the residual covariance matrix.

Listing 4.30: Results from rr-test1
1 MFLOPs d u r i n g f a c t o r i z a t i o n : 150 .41
2
3 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

4 ∗ E S T I M A T E S I N F O R M A T I O N ∗

5 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

6
7 Thu Oct 2 1 1 : 0 3 : 3 0 2003 CPU t ime used : 0 : 1 2 : 0 6
8
9 AG Log l i k e l i h o o d : −−−−−−−−−−−− s t a t u s : 1 a t i t e r a t i o n : 111 / 111

10
11
12 −−−−−−−−−−−−−−−−−−−−−−−−−−−−− M a t r i c e s : NATURAL −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

13 3 1 1 R pe
14 2000 T T
15 40 .81590 −0.01614
16 0 .00001
17
18 4 2 1 A an ima l
19 11728 T T
20 53 .3030 −0.1833
21 0 .0219
22
23 5 3 1 E r e s i d u a l
24 2000 T T T T T
25 88 .697 −7.764 −0.692 −9.917 −6.307
26 101 .432 11 .380 9 .548 −7.070
27 128 .078 3 .185 −5.049
28 113 .363 −0.015
29 105 .870
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What do these values mean? Let us start with the residual covariance matrix. As you remember,
we are assuming heterogeneous variances along the time axis. That is why we grouped the time
span of the feeding trial in these blocks of around a month, thereby allowing different residual
variances for each month. This is what we have on the diagonal: as we can see: the residual
variances increases from 88.7kg2to 101.4kg2to128.1kg2and then goes down again to 113kg2 and
finally 105.9kg2 for the last group. The covariances give a somewhat mixed picture. Actually, we
would expect the residual covariance to diminish as the time increases between measurements.
But that is not really shown here: the covariances in the first line go from -7.8 over -0.69 to -9.9
to -6.3, not a consistent pattern.

While the estimates from the residual covariance matrix are on the original scale of the mea-
surements, this is not so for the random regression matrices. Here we are getting covariances
for the regression coefficients of the function chosen. In the case for the linear polynomial the
situation is slightly more complicated. The variance components are given for the coefficients
of the function used. Thus, if we want to know the variance we need to specify a given time and
compute them.

4.12 Model with dominance genetic effect

4.12.1 Dominance effect in pure breed populations

Let us assume:

Table 4.1: Sheep data ‘mrode.data’
Sheep Sire Dam Season Weight tr2 tr3 tr4

5 1 2 1 17.0 2.7 0.34 0.34
6 3 4 1 20.0 3.1 0.40 0.40
7 6 5 1 18.0 2.9 0.24 0.24
8 - 5 1 13.5 3.5 0.31 -
9 3 8 2 20.0 2.5 0.28 0.28
10 3 8 2 15.0 3.3 0.39 0.39
11 6 8 2 25.0 2.5 0.22 -
12 6 8 2 19.5 2.9 0.18 0.18

Single trait analysis using family subclass effect.

y = Xβ + Za + ZW f + e

y ∼ N( Xβ, ZGaZ′ + ZWD f W′Z′ + R−1)
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Algorithm 4.2 Single trait analysis with family subclass effect
Comment job = dom01
the model is based on family effect

Data
datfile=’../test/data/mrode.data’
format=’(t13,f6.0, t10, f3.0, t1,f3.0,t1,f3.0)’
header=0
dependent=weight
independent=sex tier family;

pedfile=’../test/data/mrode.ped’
format=’(5i3)’
header=0
link=tier dominance = family;

covariance
tier;
family;
start_asc =’../test/data/mrode.cov’;

Model
weight = sex + tier + family;
scaley non;

System
tolerance = 1.0d-10
method=’SO’

Output
dominance;
lhs;
debug = .true.

End
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4.12.2 An example: Egg production in laying hens

Estimating dominance variance will be demonstrated using a real life dataset from laying hens.

Introduction, data, and model

Estimation of dominance variance in data from a line of laying chicken will be explained in this
section. For statistical evaluation 8652 data records were available on surviving chicken from 3
generations.[6] Traits investigated were:

B number of eggs between 20 – 28 weeks (EN1-2), between 28 and 48 weeks (EN3-7) and
between 20 and 48 weeks (EN1-7)

B egg weight in week 28 (EW1), 33 (EW2), 40 (EW3) and the average egg weight from the
three measurements (EW)

The model used for estimating additive genetic and dominance variance is:

yi j = x′i jβ + b · ∆i j + ai j + fi + ei j

with: yi j =performance record of hen j from the full sib family i, x′i j= design vector of the
fixed effects, β =vector of fixed effects of house, hatch and floor, b =regression coefficient, 4i j=

inbreeding coefficient of hen j (as covariable), ai j =additive genetic effect of hen j, fi =random
effect of the full sib family i and ei j= random residual.

Let a be the vector of all additive genetic effects and f the vector of all family effects, which are
required to describe the phenotypic performance records and for the computation of the inverses
of the relationship matrices. From this follows:

Var(a) = A · σ2
a; Var( f ) = F · σ2

f and σ2
f =

1
4
· σ2

d

For direct and successive computation of F−1 additional (dam×sire)-subclasses are required[3].
The number of elements in vector f does not necessarily correspond to the number of full sib
families in the data. With complex family structures the dimension of f may considerably exceed
that of a. The vector size of the example are 10099 and 12789 elements for the vectorsa and f ,
respectively.

setting up the parameter file in VCE

The structure of the input file after coding (e.g. using PEST) and addition of the inbreeding coef-
ficient is shown in Listing 4.31. In the DATA section the variable FAMILY has to be used to read
the animal code as shown in Listing 4.32. Reading the same animal column into variables family
and animal is done through the FORTRAN specific format “format=’(4f12.0,2f8.0,t57,f8.0)”’,
where the “t57” directs the input to column 57 in the file to read the last variable (i.e. family):
after reading the three traits, the covariable and the factors HSE and ANIM sequentially from
left to right in the format, control then jumps back to column 57 as indicated by the t57 to pick
up the variable FAMILY).
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Comment 1: The inbreeding coefficient has been included in the statistical model of this ex-
ample (see above). Also VCE , in a prerun, can be used to compute the inbreeding coef-
ficient by defining in the OUTPUT section the command “inbreeding=’file_name”’. This
inbreeding coefficients written to file ’file_name’ will then have to be moved into the orig-
inal datafile by a tool of your choice. Notice, that this has nothing to do with estimating
dominance variance but rather with the choice of the model.

Comment 2: VCE can also do multivariate dominance model. For this example this would be
specified in the MODEL section by writing: EN1_2 EN3_7 EW = hse + p1(inbr) + anim
+ family;

Listing 4.31: Input Data ( dat11.cod)
EN1_2 EN3_7 EW INBR HSE ANIM

0.39000E+02 0 .12600E+03 0 .66300E+02 0 .00000E+00 1 3641 1
0 .26000E+02 0 .13500E+03 0 .61300E+02 0 .00000E+00 1 3642 1
0 .49000E+02 0 .13500E+03 0 .61100E+02 0 .00000E+00 1 3643 1
0 .37000E+02 0 .13300E+03 0 .61400E+02 0 .00000E+00 1 3644 1
0 .32000E+02 0 .13600E+03 0 .54000E+02 0 .00000E+00 1 3645 1

Listing 4.32: VCE parameter file (dom01.job)
comment Daten von Legehennen

DATA
d a t f i l e = ’ d a t 1 1 . cod ’ f o r m a t = ’ (4 f12 . 0 , 2 f8 . 0 , t57 , f8 . 0 ) ’
dep= EN1_2 EN3_7 EW
i n d e p= i n b r hse anim f a m i l y ;
p e d f i l e = ’ ped11 . cod ’ f o r m a t = ’ (5 i 1 0 ) ’ l i n k =anim dominance = f a m i l y ;

COVARIANCE
anim ;
f a m i l y ;

MODEL
EN3_7 = hse + p1 ( i n b r ) + anim + f a m i l y ;

SYSTEM
t o t a l =19246617

OUTPUT
s o l u t i o n s = ’vad_EN3_7 . t x t ’
i n b r e e d i n g = ’ i n b _ k o e f . t x t ’ ;

END

The VCE output is given in table 4.33. The optimization converges after 31 iteration with the
best status: 1. The dominance variance is estimated by multiplying the family variance by 4.
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The additive and dominance variance accounts for 15% and 13% of the total variance for trait
EN3-7, respectively.

Listing 4.33: Results from VCE (dom01.job)
1 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

2 ∗ E S T I M A T E S I N F O R M A T I O N ∗

3 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

4 Tue Sep 16 1 3 : 3 4 : 5 8 2008 CPU t ime used : 0 : 0 2 : 3 8
5 AG Log l i k e l i h o o d : 18976 .4471 s t a t u s : 1 a t i t e r a t i o n : 31 / 31
6 −−−−−−−−−−−−−−−−−−−−−−−−−−−−− M a t r i c e s : NATURAL −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

7 Type : A Leve l : 1 anim No . : 10099 P a t t e r n : T
8 8 .31193
9 Type : D Leve l : 1 f a m i l y No . : 12789 P a t t e r n : T

10 1 .73330
11 Type : E Leve l : 1 r e s i d u a l No . : 8625 P a t t e r n : T
12 44 .5001
13 −−−−−−−−−−−−−−−−−−−−−−−−−− Dominance = 4 ∗ f a m i l y −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

14 Type : D Leve l : 1 f a m i l y No . : 12789 P a t t e r n : T
15 6 .93319
16 −−−−−−−−−−−−−−−−−−−−−−−−−−− M a t r i c e s : P h e n o t y p i c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

17 54 .5453
18 −−−−−−−−−−−−−−−−−−−−−−−−−−−−− M a t r i c e s : RATIOS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

19 Type : D Leve l : 1 f a m i l y
20 0 .12711
21 Type : A Leve l : 1 anim
22 0 .15239
23 Type : E Leve l : 1 r e s i d u a l
24 0 .81584
25 −−−−−−−−−−−−−−−−−−−−−− M a t r i c e s : STD_ERR of components −−−−−−−−−−−−−−−−−−−−−−−−

26 Type : A Leve l : 1 anim
27 1 .39198
28 Type : D Leve l : 1 f a m i l y
29 2 .08659
30 Type : E Leve l : 1 r e s i d u a l
31 1 .08729
32 −−−−−−−−−−−−−−−−−−−−−−−− M a t r i c e s : STD_ERR of r a t i o s −−−−−−−−−−−−−−−−−−−−−−−−−−

33 Type : D Leve l : 1 f a m i l y
34 0 .9846E−02
35 Type : A Leve l : 1 anim
36 0 .024484
37 Type : E Leve l : 1 r e s i d u a l
38 0 .020870
39 −−−−−−−−−−−−−−−−−−−−− M a t r i c e s : P h e n o t y p i c c o r r e l a t i o n s −−−−−−−−−−−−−−−−−−−−−−−

40 −−−

41 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

42 ∗ O p t i m i z a t i o n f i n i s h e d wi th s t a t u s : 1 ∗

43 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

44 T e r m i n a t e d wi th g r a d i e n t sma l l , components a r e p r o b a b l y o p t i m a l .
45 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

46 ∗ Thank you , f o r c h o o s i n g VCE! ∗

47 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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4.12.3 Computational aspects in VCE

Dominance effects are created in VCE from a pedigree file in two steps. In the first step, known
families are determined and used to set up the system.

Computation of F−1

1. pedigree files are created as for standard animal models as for A−1

2. VCE then creates mates (sire, dam) following [3]

Prediction of individual dominance effect

On output, one may request to print out individual dominance effects. This is done by calculating
dominance due to Mendelian sampling (4.15) and adding family effect as shown in (4.16).

y = Xβ + Za + ZW f + Zδ + ε (4.14)

ê = Zδ̂ + ε̂ = y − Xβ − Za − ZW f

δ̂ = DδZ′R−1̂e (4.15)

d̂ = W f̂ + δ̂ (4.16)
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4.13 Models with disconnected residual covariance structure

This model deals with a situation common in pig breeding with two testing environments in a
joint genetic evaluation: a field test and a station test on other animals. This means that we have
data on animals in the field and other tested at the test station and both groups of animals tied
together via common ancestors.

4.13.1 Data Preparation

There are two ways of preparing the data: either all data can be in one file or we can have them
in two files. The latter would be the natural thing to do, as station and field comprise different
traits and effects. Also, the source is usually different. But one file may on the whole be easier
to handle. But that depends on your coding setup.

4.13.2 One data file

Specifying input for one datafile is simple and given in table 4.35. Here, we assume the default
format as it comes out of the coding process in PEST. Therefore, no format needs to be specified,
you can also leave the format for the pedigree out.

The traits within the data file have been arranged such that the two from the field come first: bfft
and adgft. They are followed by the three station test traits adgst, vc and bfst. Having prepared
the data yourself you would know that there are no records that have all 5 traits because the
animals were either on the farm or at the test station. This is given in the list output (see table
4.34). In this situation with absolutely no records that have all traits, VCE – in its wisdom
– decides that there should be no full residual covariance matrix. Instead, it creates a block
diagonal matrix with a 2x2 block in the upper left corner for the field test traits and a 3x3 in the
lower right for the station traits.

Listing 4.34: pattern of traits for Np08
1 P a t t e r n o f t r a i t s
2 ______________________________________________________________
3 Count b f f t a d g f t a d g s t vc b f s t
4 ______________________________________________________________
5 0 x x x x x
6 4563 x x − − −

7 3231 − − x x x
8 3231 − − x x x
9 ______________________________________________________________

This is shown in table 4.36 which gives the starting values.The prerequisite for having VCE
reduce the residual covariance matrix to those two blocks is that the traits belonging together in
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one block are indeed placed adjacent in the data file. Thus, if you are mixing the station and
field test, then VCE will produce a full matrix.

Listing 4.35: parameter file Np08 (one file)
1 DATA
2 c . . . . . . . . . . . . . . . . . . . . . . f i e l d t r a i t s
3 d a t f i l e = ’ . . / d a t a / np37 . da t ’
4 dep = b f f t a d g f t a d g s t vc b f s t
5 i n d e p= w o f f t hms a n i ma l sex l i t t e r h y s f t s t y s ;
6 c . . . . . . . . . . . . . . . . . . . . . . p e d i g r e e f i l e
7 p e d f i l e = ’ . . / d a t a / np37 . ped ’ f o r m a t= ’ ( 4 I10 ) ’ l i n k =an im a l ;
8 MODEL
9 b f f t = r e g ( w o f f t ) an im a l sex l i t t e r h y s f t ;

10 a d g f t = an im a l sex l i t t e r h y s f t ;
11 a d g s t = an im a l sex l i t t e r s t y s ;
12 vc = an im a l sex l i t t e r s t y s ;
13 b f s t = r e g ( hms ) an im a l sex l i t t e r s t y s ;
14 COVARIANCE
15 a n i ma l ;
16 l i t t e r ;
17 h y s f t ;
18 s t y s ;
19 SYSTEM
20 non_ze ro =963000
21 t o t a l = 10299579
22 end

Listing 4.36: default starting values with disconnected datasets
1
2 8 5 1 E r e s i d u a l
3 0 .25000 0 .01789 0 .00000 0 .00000 0 .00000
4 0 .24990 0 .00000 0 .00000 0 .00000
5 0 .24992 0 .01789 0 .01788
6 0 .24988 0 .01820
7 0 .24985

4.13.3 Two files

Using the “natural” data representation, i.e. having data separately in two files, is the route given
in table 4.37. As can be seen we have two blocks in the DATA section, one for field traits and
another for station traits. At the same time there are also variables common to both: clearly the
animal but also litter and sex. As we can see more than one file is used by simply adding another
datfile block with its specifications of format dependent and independent. The problem with
more than one file lies in the issue of coding. As you will know by now, input data to VCE must
be coded 1,2,3 and so on. While this is no problem for effects that reside solely in one file, it may
become problem with “animal”. If we were coding only one file at a time, animals in the other
file may not be included. This will not be the case if we would use the same pedigree file for the
two coding runs for field and station. If coding is done with PEST then this setup will produce
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correct results provided the pedigree file is correct for the sum of the field plus the station test
file. This again is a question of how the pedigree file itself is generated. One usually starts with
the animal records, i.e. the measurement. Then one should go recursively back through all the
pedigree records one has and put only those in the pedigree file that have connections with the
data. One way of doing this is to use our program gen_ped.f90 for flat files. Another way in the
database context of APIIS is to use the PERL scripts that we developed there. Some are using
SAS for this and I am sure that there are still other ways to generated pedigrees.

Going back to data input to VCE: one needs to be aware of the problem of coding. This is the
objective of the paragraph above. As can be seen from the parameter file 4.37, the two files
used here are actually only one. Further down we shall discuss the setup of specifying only one
file. Here, it was pretend we have two file: the first contains field test traits ultrasonic backfat
(bfft) and average daily gain (adgft), while the second contains the average daily gain on test, the
valuable cuts and the measured backfat on the carcass. Because VCE is written in FORTRAN
the format specifiers have to be those of FORTRAN. Have a look at a FORTRAN manual in
case you do not know them by heart. Because we actually read from one file, we need to skip
the station test columns in the field test read and conversely for the station test access.

The MODEL section is straight forward: we have a linear regression for some of the traits plus
a number of random components. As regards coding: perhaps “litter” is worth a comment. Here
all those records belonging to one litter have to have the same code. This is conveniently done
by concatenating the sow identification and the birthdate of the litter.

The COVARIANCE section tells us which of the effects are random, here it is animal, lit-
ter, herd/year/season in the field and station/year/season at the test station. If the line “resid-
ual(datfile)” would not be in this section then we would always assume a full residual covariance
matrix, i.e. a five by five matrix for this VCE6 run. This is different in VCE4: each input file
created one residual covariance matrix. Thus, VCE4 would have created from this parameter file
two residual covariance matrices: a 2x2 for the two field test traits and a 3x3 for the three station
test traits. This (meaningful) setup is defined in VCE6 by adding the keyword “residual(datfile)”
to the COVARIANCE section as done in parameter file as shown in table 4.37.
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4.13 Models with disconnected residual covariance structure

Listing 4.37: parameter file Np08
1 DATA
2 c . . . . . . . . . . . . . . . . . . . . . . f i e l d t r a i t s
3 d a t f i l e = ’ . . / d a t a / np37 . da t ’
4 f o r m a t = ’ ( 2 f12 . 0 , 3 6 x , f12 . 0 , 1 2 x , f8 . 0 , f8 . 0 , f8 . 0 , 4 f8 . 0 ) ’
5 dep = b f f t a d g f t
6 i n d e p= w o f f t a n i ma l sex l i t t e r h y s f t ;
7
8 c . . . . . . . . . . . . . . . . . . . . . . s t a t i o n t r a i t s
9 d a t f i l e = ’ . . / d a t a / np37 . da t ’

10 f o r m a t = ’ (24 x , 3 f12 . 0 , 1 2 x , f12 . 0 , 3 f8 . 0 , 8 x , f8 . 0 ) ’
11 dep = a d g s t vc b f s t
12 i n d e p= hms a n im a l sex l i t t e r s t y s ;
13 c . . . . . . . . . . . . . . . . . . . . . . p e d i g r e e f i l e
14 p e d f i l e = ’ . . / d a t a / np37 . ped ’ f o r m a t= ’ ( 4 I10 ) ’ l i n k =an im a l ;
15 MODEL
16 b f f t = r e g ( w o f f t ) an im a l sex l i t t e r h y s f t ;
17 a d g f t = an im a l sex l i t t e r h y s f t ;
18 a d g s t = an im a l sex l i t t e r s t y s ;
19 vc = an im a l sex l i t t e r s t y s ;
20 b f s t = r e g ( hms ) an ima l sex l i t t e r s t y s ;
21 COVARIANCE
22 r e s i d u a l ( d a t f i l e ) ;
23 a n i ma l ;
24 l i t t e r ;
25 h y s f t ;
26 s t y s ;
27 SYSTEM
28 non_ze ro =963000
29 t o l e r a n c e =1.E−10
30 t o t a l = 10299579
31 end

The output does look a little different from the VCE4 setup: here, the matrix printed is a 5x5,
however the rows and columns not pertaining to the dataset are all zero 4.38. The more general
setup behind this is that the datafiles are viewed a sources for heterogeneous variances.

Listing 4.38: residual covariance matrices (heterogeneous)
1 8 5 1 E r e s i d u a l / np37 . d a t
2 4563 T T F F F
3 0 .015 0 .693 0 .000 0 .000 0 .000
4 513 .171 0 .000 0 .000 0 .000
5 0 .000 0 .000 0 .000
6 0 .000 0 .000
7 0 .000
8 9 6 1 E r e s i d u a l / np37 . d a t
9 3231 F F T T T

10 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0
11 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0
12 4217 .92 −38.98 4 . 2 9
13 2 . 8 1 −0.16
14 0 . 0 6
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Without the “residual(datfile)” we get a full residual covariance matrix for all 5 traits in the
model as given in table 4.39. Firstly, there is only one matrix generated, which is to be expected.
Then, the residual covariances among station and field test traits are not zero, however, the tend
to be small. But one should be very clear about these covariances: there are NO data to estimate
them, because there is not one record in the data set that has all five records measured. Therefore,
this full covariance matrix is meaningless and should not be generated for the given dataset!

Listing 4.39: residual covariance matrices (full)
1 8 5 1 E r e s i d u a l
2 0 T T T T T
3 0 .015 0 .693 0 .137 0 .001 0 .000
4 513 .198 30 .981 0 .128 0 .089
5 4217 .538 −38.982 4 .287
6 2 .811 −0.163
7 0 .058
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5 FAQ

In this sections you can find answers to frequently asked questions. We would be pleased if
you could supply us with more answers to questions not covered here. Send them and we shall
incorporate the text.

5.1 I am getting status 3, what now?

Estimating covariance components with VCE is an iterative process. As such there has to be a
stopping criterion which is used to indicate convergence. In VCE this is the first derivatives of
the likelihood with respect to the parameters. If all goes well, i.e. if the first derivative is indeed
zero, then a status 1 is issued. If you get this, you know that you have reached convergence and
that you can trust the covariance components. Digital computer do have a limited accuracy. With
not very well behaved systems (whatever that may be) numerical problems may arise because of
limited accuracy. Then you may get a status = 2. And finally, you may get 3. Runs with status 2
are often OK, while the status 3 is often an indication that the model used does not really fit the
data.

What can be done in this situation? A status > 1 arises usually in higher dimensional model,
i.e. in multiple trait models: the more traits the more often this may happen. Also, with random
regression model this may happen more often. Sometimes the results are obviously nonsensical,
for instance if you get a heritability of .8 on some reproduction trait, you know that something is
wrong. In this situation go back to the model and ask yourself if it is really appropriate. Levels
of fixed effects with few observation may also be a cause. Then simplify the model, but always
know your data structure.

If on the other hand the results look reasonable, they may indeed be just fine, even with a status
3. In such a case do a few univariate or bivariate runs. Their results will not differ a lot from
the higher dimensional run, if this one is OK. Then you can be confident to use the results even
from a run that finished with status 3.

5.2 The degree of fill is above 80% and things are getting slow

In the initial phase of a VCE run, the non zero coefficient of the mixed model equations are set
up and stored in memory. This is done in sparse format using the IA, JA, A storage scheme. To
locate coefficients in the IA buffer a hashing scheme is used. This means, that on the basis of
the mixed model address (row, column) a hashing value is computed. This places all row and
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column combination as evenly as possible over the complete vector. Such a newly computed
hash value is used to access vector location in IA and JA. If this location is free, then the row
and column numbers are stored in the respective location determined by the hash in IA and JA
and all is well. If however this location already holds a value (from some other row/column
pair), then the next sequential locations are checked until a free location is found. When the
degree of fill of the IA/JA vectors goes higher than 70% it will happen increasingly often, that
the pre-computed location is already occupied and that increasingly more further locations will
have to be checked to find a free spot, which slows the initial process of storing the non zero
coefficients down to a degree that it may not come to an end.

Thus, if the degree of fill goes beyond 70% and the hit rate starts creeping up from a normal 1.2
or so, then you should kill VCE (CNTR C), increase in SYSTEM the NON_ZERO elements and
start again.

Once all coefficients are loaded in memory, the following computations are independent if the
hit rate has gone up to 1.1 or 10.

5.3 VCE says the computer does not have enough memory or
SEGMENTATION violation

You have a smallish kind of data set, and a two trait model. You are the proud owner of a
computer with 1GB of RAM. Then you start VCE and it tells you SEGMENTATION violation
or that you may not have enough memory. All very strange: big computer, small data set and
model. The explanation may be easy: in the SYSTEM section the user needs to specify the
number of NON_ZERO elements and the TOTAL. This is sometime done in the fashion of
putting the finger down on the 9 and then keeping it there for a while, which may result in
something like: non_zero = 999999999 . Lets look at this: we are anticipating one less than 1
billion non zero elements! So be a little more humble and start with less. If the number you give
for TOTAL VCE will incrementally and automatically stop the current operation, and reallocate
a bigger chunk and start again. But you can equally well stop the process and increase the
number yourself.

The traps involved with determining the number of non zero elements have been described above
in paragraph 5.2 on the previous page.

The program ’top’ which is available on every real computer (don’t know about windows boxes)
should be used by you to see how much RAM your VCE process uses.

5.4 Can I do a 20 trait model?

That would be nice, but can likely not be done. There are a number of reasons for this.

Memory memory requirements increase quadratically with the number of traits. In a univariate
model for each effect x effect combination we have 1 non zero element, with 2 traits that
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would be 4, with 3 9 elements and with 20 it would be 20*20 = 400. This will easily blow
the physical memory of your computer, even if you have GB instead of megabytes in your
machine.

CPU-time per round Along with memory requirements increase the computations required
also goes up, as they are a direct function of the number of non zero elements. Thus, even
if you may be able to store a large system in memory, the computation may take longer
than you have time to wait.

Number of iterations Furthermore, higher dimension systems often need more rounds itera-
tions to converge. So this will further add to the computing time.

So what can be done safely? Well, it all depends on the data set and the model in your special
situation. Five trait model are common, some have done ten trait runs. Actually, we should ask
among the VCE users to find out.

5.5 Is there a 64bit version of VCE?

As we have seen above, VCE can suck up a lot of memory and thereby possibly hit the 2GB limit
that 32 bit operating systems pose. In the last years 64 bit machines have become increasingly
available, on which the addressable memory is 8TB which is about 8000GB. So for large systems
64 bit machines will be useful tools. While this will address the memory issue it will still leave
us with the computing time issues outlined above.

But anyway, the question was: “ are there 64bit VCE versions available”. The answer is: “Yes”,
at least for some platforms. To date we can produce ourselves X86_64 versions for Linux which
will run on Xeons and AMD. To check have a look at our ftp site ftp.tzv.fal.de/pub/vce.

5.6 Can I run a 32 bit version on a 64 bit computer?

Yes indeed! If you do not need the extended address space beyond 2GB then a 64bit version
has no advantages. Contrary to popular belief, 64bit versions are not faster on the same problem
than a 32 bit version.

5.7 What is estimated: covariance components or ratios?

There are never programs without errors. This certainly also applies to VCE. We have been
careful testing and debugging. Also, we have put in lots of output that the user can and should
be checking. And this is also what she should do with the final results. What is actually estimated
by VCE is only the variance and covariance components for the residual and the random factors.
Ratios and phenotypic are computed by VCE on the basis of these estimates as a service to the
users. However, you yourself should verify if this is done correctly.
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5.8 Can I do a likelihood ratio test?

The answer is here a clear NO. While this may be unfortunate, this is the situation. The like-
lihood value given by VCE is actually different from the real likelihood in that only that part
required for optimization is computed. Further information can be found here 4.11.1.

5.9 BLUP vs VCE: different models?

Often the process of estimating covariance components is treated as something totally differ-
ent from that of computing BLUP and BLUE in selection programs. The effects considered in
the model may be very different and also the dimensionality in terms of number of traits in-
volved. Sometimes genetic evaluation is done on, e.g. 5 traits, while covariance components
are estimated on bivariate models with some averaging elements that came out of multiple runs.
A statistical model is an attempt the account for the variances in data based on knowledge of
the population structure and what influences records. Thus, there is no (good) reason to have
different set of model for different purposes for the same datasets.

As a general rule: the models should be identical for BLUP and variance component estimation.
Clearly, with iteration on data much larger systems can be solved for BLUP, while REML re-
quires storage of coefficients in memory. Thus, one could consider using a smaller dataset for
the latter. But changing the model does not sound like a good idea.

5.10 For which platforms is VCE available?

Currently, VCE is available for Linux both on the Intel i686 and x64 platform (the 64 bit Xeon
and AMD processors. Also, binaries for Windows are available for 32 and (hopefully) 64 bit.
A 32bit version is also there for the Intel based Mac OS. Furthermore, a binary is available for
IBM AIX/RISC-6000 achines.

5.11 Where do I click to start VCE?

Nowhere! Actually, that is not quite correct. On Windows machines you need to click to start a
console. From there on you only work in the console by using your wee little fingers to push the
keys and not the mouse. This is Old School and usually way faster that pointing and clicking.

If you do not like it: too bad.

5.12 Does VCE produces standard errors?

Indeed, VCE produces estimates of standard errors of the components and ratios. However, a
few constraints need to be noticed:
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B standard errors are based on the second derivatives which are approximated through finite
differences.

B as a result standard errors only make sense if full convergence (i.e. status 1) is reached.

B further, if VCE has been (re)started with starting values close to the solutions, resulting
in fast convergence, VCE has not had enough time to build up the approximated second
derivatives. As a result the standard errors will not be meaningful.

5.13 My VCE job has been running for a week, can I see the
current estimates?

Yes, VCE writes during each iteration the outputs to a binary log file. If your parameter file is
np01 look for file ’np01.cov-bin’. To get the current estimates you do the following:

1. cp np01 np01cur (Linux) - make a copy of the pfile

2. edit the pfile: in section COVARIANCES put the keyword DUMP_BIN=’np01.cov-bin’

3. continue editing: in section OUTPUT put keyword REPRINT;

covariance
litter; animal;
dump_bin=’np09.cov-bin’;

output
reprint;

end

produces:

--------------------------------- VCE 5.3.0 -----------------------------------
09.09.2008 16:08:33 np09CURR page 1
----------------------------- Matrices: NATURAL -------------------------------
Type: A Level: 1 animal No.: 0 Pattern: T T T
2612.74 -1.95 4.06

0.01 0.05
2.60

Type: R Level: 1 litter No.: 0 Pattern: T T T
1197.14 -1.18 2.83

0.01 0.02
1.03

Type: E Level: 1 residual No.: 0 Pattern: T T T
3227.13 -3.30 12.05

0.02 0.06
3.16

If you want a full matrix with 6 decimal digits the output section becomes:

output
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reprint;
mform=’full’ format=’(F12.6)’

end

and the output is:

eg@eno:~/newvce/test/temp$ cat np09CURR.lst
--------------------------------- VCE 5.3.0 -----------------------------------
09.09.2008 16:13:42 np09CURR page 1
----------------------------- Matrices: NATURAL -------------------------------
Type: A Level: 1 animal No.: 0 Pattern: T T T
2612.742893 -1.952381 4.063978
-1.952381 0.012723 0.050691
4.063978 0.050691 2.601138

Type: R Level: 1 litter No.: 0 Pattern: T T T
1197.144739 -1.183935 2.832973
-1.183935 0.005427 0.021632
2.832973 0.021632 1.025040

Type: E Level: 1 residual No.: 0 Pattern: T T T
3227.127040 -3.299546 12.054797
-3.299546 0.018211 0.061492
12.054797 0.061492 3.158345

5.14 Can I get the covariance matrix of the estimates?

Yes, indeed. this is done by the VCM (standing for Variance Covariance Matrix). This is how it
is done:

output
vcm=’varcov.vcm’;

end

5.15 Can VCE assist me in passing the English test?

For once, the answer is a clear NO.

5.16 Constraints and Restrictions

B file names are limited to 132 character

B trait and effect names are limited to 30 characters

B the effect animal should not be the first effect in the model.

B the effect animal should be written in the model before maternal or paternal effects.
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5.16 Constraints and Restrictions

B Use effect name only once in the model. Try to combine as in 3.2 or rename them to avoid
conflicts.

B In MULTI statements defined sub-traits are assumed to have the same coefficients
(limitation in DefineCoeff)

B Effects in EQUATE statements must be described with the same function. They can
differ only in a constant coefficient.
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6 Changes for Version 6.0

While not many new features have been implemented, this version is still considered a major
release that should replace all preceding version because of the large number of bugs fixed. This
is indicated by moving from version 5 to version 6.

1. Now the form=’full’ needs to be replaced by mform=’full’ as the old version clashed with
the format=’(f12.5)’ keyword.

2. In previous versions standard errors are incorrect and therefore older versions should get
replaced.

3. Under certain circumstances maternal effects produced wrong results.

4. Now different number of traits can used for direct and maternal effects.

5. Also 64 bit binaries are available to access larger memory above 3 GB.
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