Common SNPs explain a large proportion of the heritability for human height

Jian Yang ${ }^{1}$, Beben Benyamin ${ }^{1}$, Brian P McEvoy ${ }^{1}$, Scott Gordon ${ }^{1}$, Anjali K Henders ${ }^{1}$, Dale R Nyholt ${ }^{1}$, Pamela A Madden ${ }^{2}$, Andrew C Heath ${ }^{2}$, Nicholas G Martin ${ }^{1}$, Grant W Montgomery ${ }^{1}$, Michael E Goddard ${ }^{3}$ \& Peter M Visscher ${ }^{1}$

but also, and first:

le parenté (génomique): cet inconnu

Measurements of relationships

- La matrice de parenté additive (a_{xy}, numerator relationship matrix)
- n'est pas une matrice de probabilités,
- mais de 2 * coancestries (proba d'apparénté de Malécot, $r_{x y}$)
- La consanguinité et les apparentés
- sont relatives à une population de base
- où l'on définie un apparentement arbitraire (normalement 0).

Molecular relationships

- In conservation genetics, molecular markers have often been used to estimate relationships
- Either estimates of $r_{x y}$, or estimates of « the most likely relation " (son-daughter, cousins, whatever)
- Not very accurate
- e.g. Ritland, 1996
- Some formulae pop out in later works

The genomic relationship matrix

- But we can say $\mathbf{g}=\mathbf{Z a}$
(genetic value = sum of SNP effects).
- If we assume $\operatorname{Var}(\mathbf{a})=I \sigma_{a}^{2}$, it follows that
$-\operatorname{Var}(\mathbf{g})=\mathbf{Z Z} \mathbf{Z}^{2}{ }_{\mathrm{a}}$
- Standardizing
$-\operatorname{Var}(\mathbf{g})=\mathbf{Z Z} \mathbf{Z}^{\prime}{ }_{\mathrm{u}} / \mathrm{k}=\mathbf{G} \sigma^{2}{ }_{\mathrm{u}}$
-Where σ_{u}^{2} is « the » additive variance
- and $\mathrm{k}=\sigma_{\mathrm{u}}^{2} / \sigma_{\mathrm{a}}^{2}$

The genomic relationship matrix

- How do we get the variance of SNP effects from an estimate of the polygenic variance?

$$
\sigma_{a}^{2}=\sigma_{u}^{2} / k \quad k=2 \sum_{\text {all } S N P s} p_{i}\left(1-p_{i}\right)
$$

- This formula assumes HW, linkage equilibrium of SNPs (which is false) Gianola etal. (Genetics, 2009)
- k is (in HW) equal to trace $\left(\mathbf{Z Z}^{\prime}\right) /$ number of individuals in data
- k is not the number of SNPs

The genomic relationship matrix

- The other way around
- Les SNPs sont des génotypes qui sont transmis selon des règles mendéliennes
- Donc on peut également appliquer ces lois aux different génotypes
- et calculer des « vrais » apparentés
- Digression: c'est quoi un « vrai » apparenté?

The genomic relationship matrix

- SNPs are very informative on « true » relationships
- The relationship matrix \mathbf{A} based on pedigree is an average relationship which assumes many unlinked genes, deviations of which do exist in reality
- SNPs more informative than A.
- Two fullsibs might have a correlation of 0.6 or 0.4
- You need many markers to get these « fine relationships »

Example

This is the chromosome of a sire

These are sons
In the infinitesimal model, each son receives exactly half the sire.

Example

This is the chromosome of a sire

These are FOUR sons

- In reality, two sons are identical and other two are very different from the first two but alike among them.

First derivation

- PVR (2008) explains (without much detail) that \mathbf{G} (if derived properly) and the pedigree relationship (A) are somehow "compatible"
- He provides three derivations
- I will provide first the rationale why this is true

Formal derivation (MA Toro

- Let us imagine that to each one of the 2M founder alleles we assign at random a tag saying if the allele is A or a with probability p and $q=1-p$
- Then we genotype 9
- Can we say which ancestral allele (1 to 8) inherited 9 ?

Formal derivation (MA Toro)

- The molecular coancestry between two individuals x and y will be
- probability that two alleles are equal (alike in state),
- either because they have become identical by descent or
- either because they are not identical by descent but equal in the base population.

Formal derivation (MA Toro)

- There is a random variable g (gene content) with values $0,1 / 2$ and 1 for AA, Aa and aa
- We can derive covariances for g in two individuals i and j
- In a general population, there are nine ways in which relatives can be IBD

Nine ways in which pair of relatives can share genes identical by descent, with frequencies k_{i}

- With probabilities (Crow and Kimura)

x	y	f_{M}	p_{x}	p_{Y}	Frequency
AA	AA	1.	1.	1.	$\begin{gathered} \mathrm{k}_{0}{ }^{00} \mathrm{p}^{4}+\left(2 \mathrm{k}_{1}{ }^{00}+\mathrm{k}_{0}{ }^{10}+\mathrm{k}_{0}{ }^{01}\right) \mathrm{p}^{3}+\left(\mathrm{k}_{2}{ }^{00}\right. \\ \left.+\mathrm{k}_{0}{ }^{11}+2 \mathrm{k}_{1}{ }^{10}+2 \mathrm{k}_{1}{ }^{01}\right) \mathrm{p}^{2}+\mathrm{k}_{2}{ }^{11} \mathrm{p} \end{gathered}$
AA	Aa	0.5	1.	0.5	$\mathrm{k}_{0}{ }^{00} 2 p^{3} q+2 k_{1}{ }^{00} p^{2} q+\mathrm{k}_{0}{ }^{10} 2 p^{2} q+2 k_{1}{ }^{10} p q$
Aa	AA	0.5	0.5	1.	$k_{0}{ }^{00} 2 p^{3} q+2 k_{1}{ }^{00} p^{2} q+k_{0}{ }^{01} 2 p^{2} q+2 k_{1}{ }^{01} p q$
AA	aa	0.	1.	0.	$k_{0}{ }^{00} p^{2} q^{2}+k_{0}{ }^{10} p q^{2}+k_{0}{ }^{01} p^{2} q+k_{0}{ }^{11} p q$
aa	AA	0.	0.	1.	$\mathrm{k}_{0}{ }^{00} 4 \mathrm{p}^{2} \mathrm{q}^{2}+\mathrm{k}_{0}{ }^{10} \mathrm{p}^{2} q+\mathrm{k}_{0}{ }^{01} p q^{2}+\mathrm{k}_{0}{ }^{11} \mathrm{pq}$
Aa	Aa	0.5	0.5	0.5	$\mathrm{k}_{0}{ }^{00} \mathrm{p}^{2} \mathrm{q}^{2}+2 \mathrm{k}_{1}{ }^{00} p q+\mathrm{k}_{2} 2 p q$
Aa	aa	0.5	0.5	0.5	$\mathrm{k}_{0}{ }^{00} 2 \mathrm{pq}^{3}+2 \mathrm{k}_{1}{ }^{00} \mathrm{pq} 2+\mathrm{k}_{0}{ }^{01} 2 \mathrm{pq}^{2}+2 \mathrm{k}_{1}{ }^{01} \mathrm{pq}$
aa	Aa	0.5	0.	0.5	$\mathrm{k}_{0}{ }^{00} 2 p q^{3}+2 \mathrm{k}_{1}{ }^{00} \mathrm{pq}^{2}+\mathrm{k}_{0}{ }^{10} 2 p q^{2}+2 \mathrm{k}_{1}{ }^{10} \mathrm{pq}$
aa	aa	1.	0.	0.	$\begin{array}{r} \mathrm{k}_{0}{ }^{00} \mathrm{q}^{4}+\left(2 \mathrm{k}_{1}{ }^{00}+\mathrm{k}_{0}{ }^{10}+\mathrm{k}_{0}{ }^{01}\right) \mathrm{q}^{3}+\left(\mathrm{k}_{2}{ }^{00}\right. \\ \left.+\mathrm{k}_{0}^{11}+2 \mathrm{k}_{1}{ }^{10}+2 \mathrm{k}_{1}{ }^{01}\right) \mathrm{q}^{2}+\mathrm{k}_{2}^{11} \mathrm{q} \end{array}$

- and it follows that

Coancestry

- In other words
$-\operatorname{Cov}\left(\mathrm{g}_{\mathrm{i}}, \mathrm{g}_{\mathrm{j}}\right)=\mathrm{r}_{\mathrm{ij}} / \mathrm{pq}$ \square
- This holds « on expectation » for each locus - p's are those in the base population!!
- The question is how we < pool » information across loci

The genomic relationship matrix

- I will show three parameterizations
- Malécot coefficient of identity by state
- Paul Van Raden’s 2008 relationships
- All three correspond to different linear models

Malécot (IBS)

- 2*Malécot coefficients of identity (by state)
- It considers that every allele of every SNP is a gene
- Corresponds to a linear model in which every allele of every SNP has an effect, and this SNP has « a priori » 0 mean (this is a problem)
- (size of $\mathbf{a}=2$ * number of SNPs)

Most common $G_{\text {van Raden (2008), Amin et al. }}$ (2008), Astle \& Balding (2009), Yang et al. (2010) (second G)

- Estimator of relationship
$G_{i j}=2 \frac{1}{n} \sum \frac{\left(g_{i k}-p_{k}\right)\left(g_{j k}-p_{k}\right)}{p_{k}\left(1-p_{k}\right)}$
- We estimate a relationship by locus, and then we estimate its average
- Less polymorhic locus have more weight

Paul Van Raden (2008) »first G »

- Compute a covariance by each locus
- And divide by average variance (implicitely in HW, linkage equilibrium)

$$
G_{i j}=2 \frac{1}{n} \frac{\sum\left(g_{i k}-p_{k}\right)\left(g_{j k}-p_{k}\right)}{\sum p_{k}\left(1-p_{k}\right)} \quad \mathbf{G}=\frac{\mathbf{Z Z}^{\prime}}{2 \sum p_{i}\left(1-p_{i}\right)}
$$

- More intuitive as a linear mixed model
- Corresponds to the work of Gianola (2009)

Some properties

- In H-W, Linkage equilibrium
- Average of $\operatorname{Diag}(\mathrm{G})=1$
- Average off-diagonal(G) $=0$
- Average genetic value of genotyped individuals $=0$
- This corresponds to the definition of base population
- With average inbreeding F,
- Average of Diag(G) $=1+F$

Mixing molecular \& pedigree relationships

- Many animals do not have genotypes ahd it would be nice to include them in the genomic relationship matrices
- There are two attempts to do so (Legarra et al., 2009; Christensen \& Lund, 2010)
- Both use pedigree-based "predictions" (and their variances) of genetic values or SNP genotypes and arrive to the same result
$\operatorname{Var}\binom{\mathbf{u}_{1}}{\mathbf{u}_{2}}=\mathbf{H}=\left[\begin{array}{ll}\mathbf{H}_{11} & \mathbf{H}_{12} \\ \mathbf{H}_{21} & \mathbf{H}_{22}\end{array}\right]=$
$\left[\begin{array}{cc}\mathbf{A}_{12} \mathbf{A}_{22}^{-1} \mathbf{G A}_{22}^{-1} \mathbf{A}_{21}+\mathbf{A}_{11}-\mathbf{A}_{12} \mathbf{A}_{22}^{-1} \mathbf{A}_{21} & \mathbf{A}_{12} \mathbf{A}_{22}^{-1} \mathbf{G} \\ \mathbf{G A}_{22}^{-1} \mathbf{A}_{21} & \mathbf{G}\end{array}\right]$

$$
\mathbf{H}^{-1}=\mathbf{A}^{-1}+\left[\begin{array}{cc}
\mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{G}^{-1}-\mathbf{A}_{22}^{-1}
\end{array}\right]
$$

- \mathbf{H}^{-1} has been used in one-step genetic evaluation (Aguilar et al., 2010)
- Still not well understood

Unsolved problems

- Full compatibility of « genomic » and « pedigree» relationships
- Only important if we want to mix both informations (as in the single-step procedure)
- We need thus the same genetic base:
- Same constraint on the genetic values (average breeding value of the base $=0$)
- Same genetic variance
- Achieved using base allelic frequencies
- But these are impossible to estimate (well)

Unsolved problems

- Ad-hoc corrections:
- Scaling: divide ZZ' by its trace and not $2 \sum p_{i}\left(1-p_{i}\right)$
- Useful if there is not H-W
- Sum to achieve same average coancestry

$$
\mathbf{G}^{\dagger}=\mathbf{G}+\mathbf{1 1} 1^{\prime} \alpha \quad \alpha=\frac{1}{n^{2}}\left[\sum_{i} \sum_{j} \mathbf{A}_{22(i, j)}-\sum_{i} \sum_{j} \mathbf{G}_{i, j}\right]
$$

- Very useful if there is selection (Vitezica)
- Regress G on A (Van Raden)

$$
\mathbf{M M}^{\prime}=g_{0} \mathbf{1 1 ^ { \prime }}+g_{1} \mathbf{A}+\mathbf{E},
$$

- Multiple breed version (Harris \& Johnson)

$$
\mathbf{G}=\mathbf{L}_{1} \hat{\mathbf{F}}_{1}^{-1}\left(\mathbf{Z} \mathbf{Z}^{\prime}-\sum_{k \leq l} \hat{b}_{1(k l)} \mathbf{J}_{(k l)}\right)_{1} \hat{\mathbf{F}}_{1}^{\prime-1} \mathbf{L}_{1}^{\prime}
$$

Unsolved problems

- Possibly, a correction based on Wright's Fst can be achieved (suggestion by ME Goddard)

$$
\left(1-f_{I T}\right)=\left(1-f_{I S}\right)\left(1-f_{S T}\right)
$$

Base

G for a

 crossbred population (Harris \& Johnson)

- Before correction

Figure 2. Heat map of genomic relationship matrix estimated ignoring breed and using whole-population SNP frequencies; darker areas correspond to a greater degree of relationship. The lower graph displays diagonal elements. $\mathrm{HF}=$ Holstein-Friesian; $\mathrm{J}=$ Jersey.

G for a

 crossbred population (Harris \& Johnson)

- After correction

Figure 1. Heat map of genotyped block of average relationship matrix; darker areas correspond to a greater degree of relationship. The lower graph displays diagonal elements. HF = Holstein-Friesian; $\mathrm{J}=$ Jersey.

Real results (AMASGEN)

- 9 real ~5000

- Very
- All ge estima
- Genol
- Popul
- Program

(whole) Pedigree-based relationship

Little inbreeding

| | $[, 1]$ | $[, 2]$ | $[, 3]$ | $[, 4]$ | $[, 5]$ | $[, 6]$ | $[, 7]$ | $[, 8]$ | $[, 9]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $[1]$, | 1.00 | 0.51 | 0.57 | 0.51 | 0.26 | 0.15 | 0.15 | 0.14 | 0.14 |
| $[2]$, | 0.51 | 1.01 | 0.30 | 0.33 | 0.17 | 0.17 | 0.12 | 0.11 | 0.11 |
| $[3]$, | 0.57 | 0.30 | 1.07 | 0.30 | 0.20 | 0.12 | 0.18 | 0.11 | 0.12 |
| $[4]$, | 0.51 | 0.33 | 0.30 | 1.01 | 0.17 | 0.18 | 0.11 | 0.11 | 0.11 |
| $[5]$, | 0.26 | 0.17 | 0.20 | 0.17 | 1.00 | 0.56 | 0.51 | 0.52 | 0.53 |
| $[6]$, | 0.15 | 0.17 | 0.12 | 0.18 | 0.56 | 1.06 | 0.31 | 0.32 | 0.32 |
| $[7]$, | 0.15 | 0.12 | 0.18 | 0.11 | 0.51 | 0.31 | 1.01 | 0.30 | 0.29 |
| $[8]$, | 0.14 | 0.11 | 0.11 | 0.11 | 0.52 | 0.32 | 0.30 | 1.02 | 0.30 |
| $[9]$, | 0.14 | 0.11 | 0.12 | 0.11 | 0.53 | 0.32 | 0.29 | 0.30 | 1.03 |

Relationships among cousins are ~ 0.125

"Second G" genomic relationship

Less than 1 in the diagonal Negative coefficients

					[,]
	. 82	0.40	0.43	0.38	0.12	0.04	0.0	0.	0.10
[2,	0.40	0.91	0.18	0.24	0.02	0.05	-0.04	-0.0	0.04
[3,	0.43	0.18	0.88	0.19	0.07	0.00	0.07	-0.02	0.05
[4,	0.38	0.24	0.19	0.86	0.02	-0.01	-0.02	0.01	0.03
[5,	0.12	0.02	0.07	0.02	0.73	0.34	0.30	0.31	0.35
[6,	0.04	0.05	0.00	-0.01	0.34	0.85	0.15	0.14	0.18
[7,	0.04	-0.04	0.07	-0.02	0.30	0.15	0.80	0.14	0.17
[8,	0.01	-0.04	-0.02	0.01	0.31	0.14	0.14	0.80	0.17
[9,	0.10	0.04	0.05	0.03	0.35	0.18	0.17	0.17	0.85

Relationships among cousins are ~ 0

$$
G_{i j}=2 \frac{1}{n} \frac{\sum\left(g_{i k}-p_{k}\right)\left(g_{j k}-p_{k}\right)}{\sum p_{k}\left(1-p_{k}\right)}
$$

"Eirgt sis ofncinicin

Closer to 1 in the diagonal

$[1,1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$	$[, 6]$	$[, 7]$	$[, 8]$	$[, 9]$	
$[1,7$	0.91	0.44	0.47	0.42	0.14	0.05	0.05	0.02	0.11
$[2]$,	0.44	1.01	0.20	0.27	0.02	0.06	-0.64	-0.04	0.04
$[3]$,	0.47	0.20	0.98	0.21	0.07	0.00	0.08	-0.02	0.05
$[4]$,	0.42	0.27	0.21	0.96	0.02	-0.01	-0.02	0.01	0.04
$[5]$,	0.14	0.02	0.07	0.02	0.81	0.37	0.33	0.35	0.39
$[6]$,	0.05	0.06	0.00	-0.01	0.37	0.94	0.16	0.15	0.20
$[7]$,	0.05	-0.04	0.08	-0.02	0.33	0.16	0.88	0.15	0.19
$[8]$,	0.02	-0.04	-0.02	0.01	0.35	0.15	0.15	0.88	0.18
$[9]$,	0.11	0.04	0.05	0.04	0.39	0.20	0.19	0.18	0.94

Very similar but more "exaggerated"

$$
G_{i j}=2 \frac{1}{n} \sum \frac{\left(g_{i k}-p_{k}\right)\left(g_{j k}-p_{k}\right)}{p_{k}\left(1-p_{k}\right)}
$$

Malọ́ñt nennmier. relationship

Large coefficients
This is because it assumes that the two alleles at one locus are independents

$[, 6]$	$[, 7]$	$[, 8]$	$[, 9]$
1.34	1.34	1.33	1.36
1.34	1.30	1.30	1.33
1.32	1.35	1.31	1.33

| $\lfloor 4\rfloor$, | 1.43 | 1.39 | 1.38 | 1.63 | 1.34 | 1.32 | 1.31 | 1.32 | 1.33 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $[5]$, | 1.38 | 1.34 | 1.36 | 1.34 | 1.65 | 1.48 | 1.46 | 1.47 | 1.48 |
| $[6]$, | 1.34 | 1.34 | 1.32 | 1.32 | 1.48 | 1.66 | 1.39 | 1.39 | 1.40 |
| $[7]$, | 1.34 | 1.30 | 1.35 | 1.31 | 1.46 | 1.39 | 1.64 | 1.39 | 1.40 |
| $[8]$, | 1.33 | 1.30 | 1.31 | 1.32 | 1.47 | 1.39 | 1.39 | 1.64 | 1.40 |
| $[9]$, | 1.36 | 1.33 | 1.33 | 1.33 | 1.48 | 1.40 | 1.40 | 1.40 | 1.66 |

"Second G" genomic relationship after Yang et al. correction for the diagonal
Very close to 1 in the diagonal
Negative coefficients

] [,5] [,6]	[,] [] $[, 9]$
	0.93	0.40	0.43	0.38	0.12	0.04	0.04	0.0	0.10
[2,	0.40	1.00	0.18	0.24	0.02	0.05	-0.04	-0.04	0.04
[3,	0.43	0.18	0.98	0.19	0.07	0.00	0.07	-0.02	0.05
[4,	0.38	0.24	0.19	0.96	0.02	-0.01	-0.02	0.01	0.03
[5,	0.12	0.02	0.07	0.02	0.93	0.34	0.30	0.31	0.35
[6,	0.04	0.05	0.00	-0.01	0.34	0.99	0.15	0.14	0.18
[7,	0.04	-0.04	0.07	-0.02	0.30	0.15	0.95	0.14	0.17
[8,	0.01	-0.04	-0.02	0.01	0.31	0.14	0.14	0.95	0.17
[9,	0.10	0.04	0.05	0.03	0.35	0.18	0.17	0.17	0.98

Relationships among cousins are ~ 0

G for a

 crossbred population (Harris \& Johnson)

Figure 2. Heat map of genomic relationship matrix estimated ignoring breed and using whole-population SNP frequencies; darker areas correspond to a greater degree of relationship. The lower graph displays diagonal elements. $\mathrm{HF}=$ Holstein-Friesian; $\mathrm{J}=$ Jersey.

G for a

 crossbred population (Harris \& Johnson)

Figure 1. Heat map of genotyped block of average relationship matrix; darker areas correspond to a greater degree of relationship. The lower graph displays diagonal elements. $\mathrm{HF}=$ Holstein-Friesian; $\mathrm{J}=$ Jersey.

Use of G

- Genomic selection (GBLUP)
- Estimation of genomic parameters (GREML)
- In populations with no pedigree recording
- How much variance due to SNPs, how to pedigree
- Improved association analysis model (Yu et al...)

$$
-\mathbf{y}=\mathrm{SNP}_{\mathrm{i}}+\mathbf{g}+\mathbf{e}, \mathbf{g} \sim \mathrm{N}\left(0, \mathbf{G} \sigma_{\mathrm{g}}{ }^{2}\right)
$$

Conclusions

- Genomic relationships work very well and are (now) well defined
- The exact formula depends on the interpretation but results do not change much
- Unless somebody wants to combine pedigree and molecular relationships

Common SNPs explain a large proportion of the heritability for human height
 Jian Yang ${ }^{1}$, Beben Benyamin ${ }^{1}$, Brian P McEvoy ${ }^{1}$, Scott Gordon ${ }^{1}$, Anjali K Henders ${ }^{1}$, Dale R Nyholt ${ }^{1}$, Pamela A Madden ${ }^{2}$, Andrew C Heath ${ }^{2}$, Nicholas G Martin ${ }^{1}$, Grant W Montgomery ${ }^{1}$, Michael E Godd Peter M Visscher ${ }^{1}$

- Or: The « missing » heritability was always there

Missing heritability

- Found SNP variants explaining height explain a very small fraction of heritability
- Most likely explanation lots of variations and little power

In the paper

- Use a mixed model to estimate heritability
- Explain we do they found less than expected
- They say it's because typical QTLs have <0.1 MAF
- What I think
- I don't fully believe their explanation
- But it is a possibility
- And the methods are very interesting

Methods

- Estimate heritability by REML using SNPs in « unrelated» population and a genomic relationship matrix
- Kinship estimated using slightly modified formula with correction for the diagonal

$$
A_{j k}=\frac{1}{N} \sum_{i} A_{i j k}=\left\{\begin{array}{l}
\frac{1}{N} \sum_{i} \frac{\left(x_{i j}-2 p_{i}\right)\left(x_{i k}-2 p_{i}\right)}{2 p_{i}\left(1-p_{i}\right)}, j \neq k \\
1+\frac{1}{N} \sum_{i} \frac{x_{i j}^{2}-\left(1+2 p_{i}\right) x_{i j}+2 p_{i}^{2}}{2 p_{i}\left(1-p_{i}\right)}, j=k
\end{array}\right.
$$

- « Unrelated» individuals: relationships from -0.025 to 0.025
- Is this not a problem?

Results

- Estimate of h2 $=0.45$ (+- 0.08)
- Usual estimate is 0.8
-Why?

Is « relationship » a < true » relationship?

- Hypothesis: SNP do not provide realistic estimates of relationships because they are not « true » QTLs
- What if QTLs have smaller MAF than SNPs?
- Then relationships are « under» estimated
- Can be checked by comparing $A_{i j}$ estimated with SNPs at low MAF and $A_{i j}$ estimated with all

$$
A_{j k}^{*}=\left\{\begin{array}{l}
\boldsymbol{\beta} A_{j k}, j \neq k \\
1+\beta\left(A_{j k}-1\right), j=k
\end{array} \quad \beta=1-\frac{(c+1 / N)}{\operatorname{var}\left(A_{j k}\right)}\right.
$$

- Assume MAF of QTLs is <0.1, then re-compute \mathbf{A}^{*}

Results 2

- Estimate of h2 = 0.84 (+- 0.16)
- Usual estimate is 0.8
- Are we happy?

This does not prove that the causal variants have MAF < 0.1, but it shows that if this were the case, they could explain the estimated heritability of height (~ 0.8).

Conclusions

- Missing heritability is there, but GWAS tests are just too stringent. Random models overcome this problem.
- Possibly, not all causal variants are well tagged by SNPs
- (problem of SNP chip but also of amount of data)

Criticism

- Why do we need to correct the genomic matrix?
- Estimates of 0.8 can possibly be obtained with « uncorrected » pedigre relationship matrix?
- Is the second heritability « the same »?
- Do they refer to the same genetic base?

Variance of the base population

Short example:

- These two formulations parent-son are

$$
\mathbf{g} \sim \mathbf{G} \sigma_{g}^{2}
$$ equivalent

- Is the first less inbred with more variance or $\left(\begin{array}{l}u_{s} \\ \text { the second less inbred with more variance? } \\ u\end{array}\right) \sim\left(\begin{array}{cc}1 & 0.5 \\ 0.5 & 1\end{array}\right) 1.1$
- If we manipulate \mathbf{G}, we possibly refer to different things

$$
\binom{u_{s}}{u} \sim\left(\begin{array}{cc}
1.1 & 0.55 \\
0.55 & 1.1
\end{array}\right) 1
$$

Real example (mice data)

- I took one \mathbf{G} computed for the mice data and estimated variance components with \mathbf{G}, and with $\mathbf{G}^{*}=\mathbf{G}^{\star} 0.5$
- The heritability increases artificially

	varg	varu	varc	vare	h^{2}
		Body length			
A		0.038	0.048	0.147	0.16
G	0.035		0.050	0.149	0.15
$G^{*}=G^{*} 0.5$	0.071		0.050	0.149	0.26

Criticism

- Is this just a problem of wrong estimation?
- Large standard error in estimation of h^{2}
- If we have very little genetic information (individuals are unrelated), how can we estimate heritabilities?
- Low relationships -> possible bias
- Bias of heritability depends on the relationship (Ponzoni and James, 1978):

$$
E(\hat{t}-\mathrm{t}) \simeq \frac{-2(1-\mathrm{t})\left(\mathrm{t}+\frac{\mathrm{l}-\mathrm{t}}{\mathrm{n}}\right)\left(\mathrm{t}+\frac{1-\mathrm{t}}{\mathrm{sn}}\right)}{\mathrm{s}-1}
$$

- For $s=100$ couples of $n=2$ individuals related by 0.001 expected bias of h^{2} is -0.26

(My) Conclusion

- Very interesting paper
- They are right that heritability is not missing and that mixed models can estimate it correctly
- I think that using < unrelated » individuals causes them problems in estimation
- I also think that SNP do not completely trace causal variants, but not only because of MAF (small effects, epistasis)

