## Common SNPs explain a large proportion of the heritability for human height

Jian Yang<sup>1</sup>, Beben Benyamin<sup>1</sup>, Brian P McEvoy<sup>1</sup>, Scott Gordon<sup>1</sup>, Anjali K Henders<sup>1</sup>, Dale R Nyholt<sup>1</sup>, Pamela A Madden<sup>2</sup>, Andrew C Heath<sup>2</sup>, Nicholas G Martin<sup>1</sup>, Grant W Montgomery<sup>1</sup>, Michael E Goddard<sup>3</sup> & Peter M Visscher<sup>1</sup>

## but also, and first:

le parenté (génomique): cet inconnu



## Measurements of relationships

- La matrice de parenté additive (a<sub>xy</sub>, numerator relationship matrix)
  - n'est pas une matrice de probabilités,
  - mais de 2 \* coancestries (proba d'apparénté de Malécot, r<sub>xv</sub>)
- La consanguinité et les apparentés
  - sont relatives à une population de base
  - où l'on définie un apparentement arbitraire (normalement 0).

## Molecular relationships

- In conservation genetics, molecular markers have often been used to estimate relationships
  - Either estimates of r<sub>xy</sub>, or estimates of « the most likely relation » (son-daughter, cousins, whatever)
  - Not very accurate
  - e.g. Ritland, 1996
- Some formulae pop out in later works

- But we can say g = Za
   (genetic value = sum of SNP effects).
- If we assume  $Var(\mathbf{a}) = \mathbf{I}\sigma^2_{\mathbf{a}}$ , it follows that
  - $Var(\mathbf{g}) = \mathbf{ZZ'} \sigma^2_a$
- Standardizing
  - $Var(\mathbf{g}) = \mathbf{ZZ'} \sigma_{u}^{2} / k = \mathbf{G} \sigma_{u}^{2}$

- -Where  $\sigma^2$  is « the » additive variance
- -and  $k = \sigma_u^2/\sigma_a^2$

 How do we get the variance of SNP effects from an estimate of the polygenic variance?

$$\sigma_a^2 = \sigma_u^2/k$$
  $k = 2 \sum_{all \, SNPs} p_i (1 - p_i)$ 



- This formula assumes HW, linkage equilibrium of SNPs (which is false) Gianola et al. (Genetics, 2009)
- k is (in HW) equal to trace(ZZ')/ number of individuals in data
- k is not the number of SNPs

- The other way around
  - Les SNPs sont des génotypes qui sont transmis selon des règles mendéliennes
  - Donc on peut également appliquer ces lois aux different génotypes
  - et calculer des « vrais » apparentés
- Digression: c'est quoi un « vrai » apparenté?



- SNPs are very informative on « true » relationships
- The relationship matrix A based on pedigree is an average relationship which assumes many unlinked genes, deviations of which do exist in reality
- SNPs more informative than A.
  - Two fullsibs might have a correlation of 0.6 or 0.4
- You need many markers to get these « fine relationships »

## Example



In the infinitesimal model, each son receives exactly half the sire.

## Example



•In reality, two sons are identical and other two are very different from the first two but alike among them.

#### First derivation



- PVR (2008) explains (without much detail) that G (if derived properly) and the pedigree relationship (A) are somehow « compatible »
- He provides three derivations
  - I will provide first the rationale why this is true

## Formal derivation (MA Toro

- Let us imagine that to each one of the 2M founder alleles we assign at random a tag saying if the allele is A or a with probability p and q=1-p
- Then we genotype 9
- Can we say which ancestral allele (1 to 8) inherited 9?



## Formal derivation (MA Toro)

- The molecular coancestry between two individuals x and y will be
  - probability that two alleles are equal (alike in state),
    - either because they have become identical by descent or
    - either because they are not identical by descent but equal in the base population.



## Formal derivation (MA Toro)

- There is a random variable g (gene content) with values 0, ½ and 1 for AA, Aa and aa
- We can derive covariances for g in two individuals i and j
- In a general population, there are nine ways in which relatives can be IBD

## Nine ways in which pair of relatives can share genes identical by descent, with frequencies $k_i$



#### • With probabilities (Crow and Kimura)

| х  | у  | f <sub>M</sub> | p <sub>X</sub> | p <sub>Y</sub> | Frequency                                                                                                           |
|----|----|----------------|----------------|----------------|---------------------------------------------------------------------------------------------------------------------|
| AA | AA | 1.             | 1.             | 1.             | $k_0^{00}p^4 + (2k_1^{00} + k_0^{10} + k_0^{01})p^3 + (k_2^{00} + k_0^{11} + 2k_1^{10} + 2k_1^{01})p^2 + k_2^{11}p$ |
| AA | Aa | 0.5            | 1.             | 0.5            | $k_0^{00}2p^3q+2k_1^{00}p^2q+k_0^{10}2p^2q+2k_1^{10}pq$                                                             |
| Aa | AA | 0.5            | 0.5            | 1.             | $k_0^{00}2p^3q+2k_1^{00}p^2q+k_0^{01}2p^2q+2k_1^{01}pq$                                                             |
| AA | aa | 0.             | 1.             | 0.             | $k_0^{00}p^2q^2_+ k_0^{10}pq^2 + k_0^{01}p^2q + k_0^{11}pq$                                                         |
| aa | AA | 0.             | 0.             | 1.             | $k_0^{00} 4p^2q^2 + k_0^{10}p^2q + k_0^{01}pq^2 + k_0^{11}pq$                                                       |
| Aa | Aa | 0.5            | 0.5            | 0.5            | $k_0^{00}p^2q^2+2k_1^{00}pq+k_2^2pq$                                                                                |
| Aa | aa | 0.5            | 0.5            | 0.5            | $k_0^{00}$ 2pq <sup>3</sup> +2 $k_1^{00}$ pq2+ $k_0^{01}$ 2pq <sup>2</sup> +2 $k_1^{01}$ pq                         |
| aa | Aa | 0.5            | 0.             | 0.5            | $k_0^{00}$ 2pq <sup>3</sup> +2 $k_1^{00}$ pq <sup>2</sup> + $k_0^{10}$ 2pq <sup>2</sup> +2 $k_1^{10}$ pq            |
| aa | aa | 1.             | 0.             | 0.             | $k_0^{00}q^4 + (2k_1^{00} + k_0^{10} + k_0^{01})q^3 + (k_2^{00} + k_0^{11} + 2k_1^{10} + 2k_1^{01})q^2 + k_2^{11}q$ |

and it follows that



- In other words
- This holds « on expectation » for each locus
  - p's are those in the base population!!
- The question is how we « pool » information across loci

- I will show three parameterizations
  - Malécot coefficient of identity by state
  - Paul Van Raden's 2008 relationships
- All three correspond to different linear models

## Malécot (IBS)

- 2\*Malécot coefficients of identity (by state)
- It considers that every allele of every SNP is a gene
- Corresponds to a linear model in which every allele of every SNP has an effect, and this SNP has « a priori » 0 mean (this is a problem)
  - (size of  $\mathbf{a} = 2 * number of SNPs)$

## Most common G Van Raden (2008), Amin et al. (2008), Astle & Balding (2009), Yang et al. (2010) (second G)

Estimator of relationship

$$G_{ij} = 2\frac{1}{n} \sum \frac{(g_{ik} - p_k)(g_{jk} - p_k)}{p_k(1 - p_k)}$$

- We estimate a relationship by locus, and then we estimate its average
- Less polymorhic locus have more weight

## Paul Van Raden (2008) »first G »

- Compute a covariance by each locus
- And divide by average variance (implicitely in H-W, linkage equilibrium)

$$G_{ij} = 2\frac{1}{n} \frac{\sum (g_{ik} - p_k)(g_{jk} - p_k)}{\sum p_k (1 - p_k)}$$
  $G = \frac{ZZ'}{2\sum p_i (1 - p_i)}$ 

- More intuitive as a linear mixed model
  - Corresponds to the work of Gianola (2009)

## Some properties

- In H-W, Linkage equilibrium
  - Average of Diag(G) = 1
  - Average off-diagonal(G) =0
  - Average genetic value of genotyped individuals =0
  - This corresponds to the definition of base population
- With average inbreeding F,
  - Average of Diag(G) = 1+F

## Mixing molecular & pedigree relationships

- Many animals do not have genotypes and it would be nice to include them in the genomic relationship matrices
- There are two attempts to do so (Legarra et al., 2009; Christensen & Lund, 2010)
- Both use pedigree-based "predictions" (and their variances) of genetic values or SNP genotypes and arrive to the same result

$$Var\begin{pmatrix} \mathbf{u}_{1} \\ \mathbf{u}_{2} \end{pmatrix} = \mathbf{H} = \begin{bmatrix} \mathbf{H}_{11} & \mathbf{H}_{12} \\ \mathbf{H}_{21} & \mathbf{H}_{22} \end{bmatrix} = \mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}^{-1} - \mathbf{A}^{-1} \\ \mathbf{G} \mathbf{A}_{22}^{-1} \mathbf{A}_{21} & \mathbf{A}_{12} \mathbf{A}_{22}^{-1} \mathbf{A}_{21} & \mathbf{A}_{12} \mathbf{A}_{22}^{-1} \mathbf{G} \end{bmatrix}$$

- H<sup>-1</sup> has been used in one-step genetic evaluation (Aguilar et al., 2010)
- Still not well understood

## Unsolved problems

- Full compatibility of « genomic » and « pedigree » relationships
  - Only important if we want to mix both informations (as in the single-step procedure)
  - We need thus the same genetic base:
    - Same constraint on the genetic values (average breeding value of the base = 0)
    - Same genetic variance
- Achieved using base allelic frequencies
  - But these are impossible to estimate (well)

## Unsolved problems

- Ad-hoc corrections:
  - Scaling: divide ZZ' by its trace and not  $2\sum p_i (1-p_i)$ 
    - Useful if there is not H-W
  - Sum to achieve same average coancestry

$$\mathbf{G}^{\dagger} = \mathbf{G} + \mathbf{1} \mathbf{1}' \alpha \qquad \alpha = \frac{1}{n^2} \left[ \sum_{i} \sum_{j} \mathbf{A}_{22 \ (i,j)} - \sum_{i} \sum_{j} \mathbf{G}_{i,j} \right]$$

- Very useful if there is selection (Vitezica)
- Regress G on A (Van Raden)

$$\mathbf{MM'} = g_0 \mathbf{11'} + g_1 \mathbf{A} + \mathbf{E},$$

Multiple breed version (Harris & Johnson)

$$\mathbf{G} = \mathbf{L}_1 \hat{\mathbf{F}}_1^{-1} \left[ \mathbf{Z} \mathbf{Z}' - \sum_{k \leq l} \hat{b}_{1(kl)} \mathbf{J}_{(kl)} \right]_1 \hat{\mathbf{F}}_1'^{-1} \mathbf{L}_1'$$



## Unsolved problems

Possibly, a correction based on Wright's
 Fst can be achieved (suggestion by ME Goddard)

G for a crossbred population (Harris & Johnson)

Too high

inbreeding

Before correction



Figure 2. Heat map of genomic relationship matrix estimated ignoring breed and using whole-population SNP frequencies; darker areas correspond to a greater degree of relationship. The lower graph displays diagonal elements. HF = Holstein-Friesian; J = Jersey.

# G for a crossbred population (Harris & Johnson)

After correction



Figure 1. Heat map of genotyped block of average relationship matrix; darker areas correspond to a greater degree of relationship. The lower graph displays diagonal elements. HF = Holstein-Friesian; J = Jersey.

## Real results (AMASGEN)

- 9 real~5000
- Very of
- All geleast
   estimate
- Genore
- Popul
- Program



## Relationships

```
621
                        [, 4]
                               [,5] [,6] [,7]
                     3]
                        0.51
                             0.26
                                          0.15
                        Q.33
[2,]
             . 30692107
                              0.20
[3,]
                  0.30
                                    0.18
[4,]
                              1898
                                                      0.53
                                                      0.32
                              0.51
                  0.18
                        0.11
                                                      0.29
                                    69 B32
                              0.52
                        0.11
                              0.53
                 0.12 0.11
                                                       6916
```

# (whole) Pedigree-based Little inbreeding relationship

```
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [1,] 1.00 0.51 0.57 0.51 0.26 0.15 0.15 0.14 0.14 [2,] 0.51 1.01 0.30 0.33 0.17 0.17 0.12 0.11 0.11 [3,] 0.57 0.30 1.07 0.30 0.20 0.12 0.18 0.11 0.12 [4,] 0.51 0.33 0.30 1.01 0.17 0.18 0.11 0.11 0.11 [5,] 0.26 0.17 0.20 0.17 1.00 0.56 0.51 0.52 0.53 [6,] 0.15 0.17 0.12 0.18 0.11 0.50 0.31 0.32 0.32 [7,] 0.15 0.12 0.18 0.11 0.11 0.51 0.31 1.01 0.30 0.29 [8,] 0.14 0.11 0.11 0.11 0.11 0.52 0.32 0.30 1.02 0.30 [9,] 0.14 0.11 0.12 0.11 0.53 0.32 0.29 0.30 1.03
```

Relationships among cousins are ~ 0.125

## "Second G" genomic relationship

Less than 1 in the diagonal

Negative coefficients

Relationships among cousins are ~0

$$G_{ij} = 2 \frac{1}{n} \frac{\sum (g_{ik} - p_k)(g_{jk} - p_k)}{\sum p_k (1 - p_k)}$$

## "First G" genomic relationship

Closer to 1 in the diagonal

Very similar but more "exaggerated"

$$G_{ij} = 2\frac{1}{n} \sum \frac{(g_{ik} - p_k)(g_{jk} - p_k)}{p_k(1 - p_k)}$$

#### Malécot genomic relationship

Large coefficients

This is because it assumes that the two alleles at one locus are independents

```
[,6] [,7] [,8] [,9]
                              1.34 1.34 1.33 1.36
                              1.34 1.30 1.30 1.33
                              1.32 1.35 1.31 1.33
         1.39 1.38 1.63 1.34 1.32
[5,] 1.38 1.34 1.36 1.34 1.65 1.48 1.46 1.47 1.48
    1.34 1.34 1.32 1.32 1.48 1.66 1.39 1.39 1.40
    1.34 1.30 1.35 1.31 1.46 1.39 1.64 1.39 1.40
[8,] 1.33 1.30 1.31 1.32 1.47 1.39 1.39 1.64 1.40
[9,] 1.36 1.33 1.33 1.33 1.48 1.40 1.40 1.40 1.66
```

## "Second G" genomic relationship after Yang et al. correction for the diagonal

Very close to 1 in the diagonal Negative coefficients

```
[,2] [,3] [,<mark>4</mark>] [,5] [,6]
                                           [,7] [,8] [,9]
    0.93
           0.40
                0.43 0.38 0.12 0.04
                                        0.04 0.01 0.10
                0.18 \quad 0.24 \quad 0.02 \quad 0.05 \quad -0.04 \quad -0.04) \quad 0.04
           1.00
     0.40
                0.98 0.19 0.07 0.00 0.07 -0.02 0.05
[3,]
    0.43 0.18
[4,]
    0.38 0.24 0.19 0.96 0.02 -0.01 -0.02 0.01 0.03
    0.12 0.02 0.07 0.02 0.93 0.34
[5,]
                                        0.30 0.31 0.35
          0.05
                0.00 -0.01 0.34 0.99 0.15 0.14 0.18
[6,]
    0.04
[7,] 0.04 -0.04 0.07 -0.02 0.30 0.15 0.95 0.14 0.17
[8,] 0.01 -0.04 -0.02 0.01 0.31 0.14 0.14 0.95 0.17
[9,] 0.10
           0.04
                0.05 0.03 0.35 0.18
                                        0.17 0.17 0.98
```

Relationships among cousins are ~0

# G for a crossbred population (Harris & Johnson)

Before correction



Figure 2. Heat map of genomic relationship matrix estimated ignoring breed and using whole-population SNP frequencies; darker areas correspond to a greater degree of relationship. The lower graph displays diagonal elements. HF = Holstein-Friesian; J = Jersey.

# G for a crossbred population (Harris & Johnson)

After correction



Figure 1. Heat map of genotyped block of average relationship matrix; darker areas correspond to a greater degree of relationship. The lower graph displays diagonal elements. HF = Holstein-Friesian; J = Jersey.

### Use of **G**

- Genomic selection (GBLUP)
- Estimation of genomic parameters (GREML)
  - In populations with no pedigree recording
  - How much variance due to SNPs, how to pedigree
- Improved association analysis model (Yu et al...)
  - $-\mathbf{y} = SNP_i + \mathbf{g} + \mathbf{e}, \mathbf{g} \sim N(0, \mathbf{G}\sigma_g^2)$

### Conclusions

- Genomic relationships work very well and are (now) well defined
- The exact formula depends on the interpretation but results do not change much
- Unless somebody wants to combine pedigree and molecular relationships

# Common SNPs explain a large proportion of the heritability for human height

Jian Yang<sup>1</sup>, Beben Benyamin<sup>1</sup>, Brian P McEvoy<sup>1</sup>, Scott Gordon<sup>1</sup>, Anjali K Henders<sup>1</sup>, Dale R Nyholt<sup>1</sup>, Pamela A Madden<sup>2</sup>, Andrew C Heath<sup>2</sup>, Nicholas G Martin<sup>1</sup>, Grant W Montgomery<sup>1</sup>, Michael E Godd Peter M Visscher<sup>1</sup>

Or: The « missing » heritability was always there

# Missing heritability

- Found SNP variants explaining height explain a very small fraction of heritability
- Most likely explanation lots of variations and little power

### In the paper

- Use a mixed model to estimate heritability
- Explain we do they found less than expected
- They say it's because typical QTLs have <0.1 MAF</li>

- What I think
  - I don't fully believe their explanation
  - But it is a possibility
  - And the methods are very interesting

### Methods

- Estimate heritability by REML using SNPs in « unrelated » population and a genomic relationship matrix
- Kinship estimated using slightly modified formula with correction for the diagonal

$$A_{jk} = \frac{1}{N} \sum_{i} A_{ijk} = \begin{cases} \frac{1}{N} \sum_{i} \frac{(x_{ij} - 2p_{i})(x_{ik} - 2p_{i})}{2p_{i}(1 - p_{i})}, j \neq k \\ 1 + \frac{1}{N} \sum_{i} \frac{x_{ij}^{2} - (1 + 2p_{i})x_{ij} + 2p_{i}^{2}}{2p_{i}(1 - p_{i})}, j = k \end{cases}$$

- « Unrelated » individuals: relationships from -0.025 to 0.025
  - Is this not a problem?

### Results

- Estimate of h2 = 0.45 (+-0.08)
- Usual estimate is 0.8
- Why?

# Is « relationship » a « true » relationship?

- Hypothesis: SNP do not provide realistic estimates of relationships because they are not « true » QTLs
  - What if QTLs have smaller MAF than SNPs?
  - Then relationships are « under » estimated
  - Can be checked by comparing  $A_{ij}$  estimated with SNPs at low MAF and  $A_{ii}$  estimated with all

$$A_{jk}^{*} = \begin{cases} \beta A_{jk}, j \neq k & \beta = 1 - \frac{(c + 1/N)}{\text{var}(A_{jk})} \\ 1 + \beta (A_{jk} - 1), j = k \end{cases}$$

Assume MAF of QTLs is <0.1, then re-compute A\*</li>

### Results 2

- Estimate of h2 = 0.84 (+-0.16)
- Usual estimate is 0.8
- Are we happy?

This does not prove that the causal variants have MAF < 0.1, but it shows that if this were the case, they could explain the estimated heritability of height ( $\sim$ 0.8).

### Conclusions

- Missing heritability is there, but GWAS tests are just too stringent. Random models overcome this problem.
- Possibly, not all causal variants are well tagged by SNPs
  - (problem of SNP chip but also of amount of data)

### Criticism

- Why do we need to correct the genomic matrix?
  - Estimates of 0.8 can possibly be obtained with « uncorrected » pedigre relationship matrix?
- Is the second heritability « the same »?
  - Do they refer to the same genetic base?

## Variance of the base population

#### Short example:

- $\mathbf{g} \sim \mathbf{G} \ \sigma_g^2$
- These two formulations parent-son are equivalent
- Is the first less inbred with more variance or  $\begin{pmatrix} u_s \\ u \end{pmatrix} \sim \begin{pmatrix} 1 & 0.5 \\ 0.5 & 1 \end{pmatrix} 1.1$  the second less inbred with more variance?
- If we manipulate G, we possibly refer to different things

$$\begin{pmatrix} u_s \\ u \end{pmatrix} \sim \begin{pmatrix} 1.1 & 0.55 \\ 0.55 & 1.1 \end{pmatrix} 1$$

# Real example (mice data)

- I took one G computed for the mice data and estimated variance components with G, and with G\* = G\*0.5
- The heritability increases artificially

|            | varg  | varu        | varc  | vare  | h <sup>2</sup> |
|------------|-------|-------------|-------|-------|----------------|
|            |       | Body length |       |       |                |
| А          |       | 0.038       | 0.048 | 0.147 | 0.16           |
| G          | 0.035 |             | 0.050 | 0.149 | 0.15           |
| G* = G*0.5 | 0.071 |             | 0.050 | 0.149 | 0.26           |

### Criticism

- Is this just a problem of wrong estimation?
- Large standard error in estimation of h<sup>2</sup>
- If we have very little genetic information (individuals are unrelated), how can we estimate heritabilities?
  - Low relationships -> possible bias
  - Bias of heritability depends on the relationship (Ponzoni and James, 1978):

$$E(\hat{t}-t) \simeq \frac{-2(1-t)\left(t + \frac{1-t}{n}\right)\left(t + \frac{1-t}{sn}\right)}{s-1}$$

 For s=100 couples of n=2 individuals related by 0.001 expected bias of h<sup>2</sup> is -0.26

## (My) Conclusion

- Very interesting paper
- They are right that heritability is not missing and that mixed models can estimate it correctly
- I think that using « unrelated » individuals causes them problems in estimation
- I also think that SNP do not completely trace causal variants, but not only because of MAF (small effects, epistasis)