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Measurements of relationships

» La matrice de parenté additive (a
numerator relationship matrix)

— n’est pas une matrice de probabilites,

— mais de 2 * coancestries (proba d’apparéentée
de Malecot, r,,)

* La consanguinité et les apparentés
— sont relatives a une population de base

— ou I'on définie un apparentement arbitraire
(normalement 0).
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Molecular relationships

* In conservation genetics, molecular
markers have often been used to estimate

relationships

— Either estimates of r,, or estimates of « the
most likely relation » (son daughter, cousins,

whatever)
— Not very accurate | § &8
— e.g. Ritland, 1996 § & |
« Some formulae pop out In later works




The genomic relationship matrix

« Butwe cansay g = Za

(genetic value = sum of SNP effects).

» If we assume Var(a)=lc?, , it follows that
—Var(g)=22Z’c2,

« Standardizing
—Var(g)= 22’ 6%, Ik = Go?,

—Where ¢2,is « the » additive variance
—and k = 62, /52,



The genomic relationship matrix

* How do we get the variance of SNP effects from an
estimate of the polygenic variance?

o2, = o2, /K k=2 Z o (1— pi)

all SNPs

e This formula assumes HW, linkage equilibrium of SNPs
(Wthh 1S false) Gianola et al. (Genetics, 2009)

« kis (in HW) equal to trace(ZZ’)/ number of individuals
In data

 kis not the number of SNPs



The genomic relationship matrix

The other way around

— Les SNPs sont des géenotypes qui sont transmis selon
des regles mendéliennes

— Donc on peut également appliquer ces lois aux
different génotypes

— et calculer des « vrais » apparentés
 Digression: c’est quoi un « vrai » apparente?
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The genomic relationship matrix

SNPs are very informative on « true »
relationships

The relationship matrix A based on pedigree is
an average relationship which assumes many

unlinked genes, deviations of which do exist in
reality

SNPs more informative than A.

— Two fullsibs might have a correlation of 0.6 or 0.4

You need many markers to get these « fine
relationships »
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Example

This 1s the chromosome of a sire

—_— These are sons e

In the Infinitesimal model, each son
receives exactly half the sire.
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Example

This 1s the chromosome of a sire

— | NEeSse are FOUR sons

*In reality, two sons are identical and other two
are very different from the first two but alike
among them.
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First derivation

* PVR (2008) explains (without much detall)
that G (if derived properly) and the
pedigree relationship (A) are somehow
« compatible »

* He provides three derivations
— | will provide first the rationale why this is true
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Formal derivation (MA Toro@

* Let us imagine that to

each one of the 2M @@

founder alleles we assign “ 00 i
: g IT I-"E ’ IT |®
at random a tag saying Iif | X ]

the allele is A or a with 4\ i

probability p and g=1-p ; aj
« Then we genotype 9

« Can we say which
ancestral allele (1 to 8)
Inherited 97
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Formal derivation (MA Toro)

« The molecular coancestry

between two individuals x 2 4

and y will be O e o0 oo .

— probability that two
alleles are equal (alike
In state),

 either because they
have become identical
by descent or

 either because they are
not identical by descent
but equal in the base
population.




Formal derivation (MA Toro)

There is a random variable g (gene content) with values
0, Y2 and 1 for AA, Aa and aa

We can derive covariances for g in two individuals i and |

In a general population, there are nine ways in which
relatives can be IBD
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Nine ways in which pair of relatives can share genes identical by
descent, with frequencies k.
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With probabilities (crow and Kimura)

X y fu Py Py Frequency
AA AA 1. 1. 1. Ko20pH+(2k, %0 +Kk, 10+k 01 p3+(k,°

+k o 11+2k,10+2k, 1) p2+k, p
AA Aa 0.5 1. 0.5 k,202p3g+2k, %0 p2q+k,192p2g+2k,1opq
Aa AA 0.5 0.5 1. k,202p3g+2k,%p2qg+k,212p2g+2k,°lpg
AA aa 0. 1. 0. K,20p202, K,1Ppa2+k,2p2a+k,tipg
aa AA 0. 0. 1. K20 4p202, K,1op2q+k,21pg?+k,tipq
Aa Aa 0.5 0.5 0.5 K,2°p?g2+2k,%pag+k,2pq
Aa aa 0.5 0.5 0.5 K,202pg3+2k,°pg2+k,12pg2+2k, *tpq
aa Aa 0.5 0. 0.5 K,202pg3+2k,%° pg2+k,1°2pg2+2k,°pq
aa aa 1. 0. 0. Ko20g4+(2k, %0 +Kk,10+k 01 g3+ (k,

+koll+2k110+2k101)q2+ kzllq
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e and it follows that

1
ny = ——COV
A PQ Covariance of
Coancestry gene content
* |n other words

— Cov(g;,9) = ri/pq — = A 12

« This holds « on expectation » for each locus
— p’'s are those in the base population!!

 The question is how we « pool » information
across loci



The genomic relationship matrix

| will show three parameterizations
— Malécot coefficient of identity by state
— Paul Van Raden’s 2008 relationships

All three correspond to different linear
models
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Malécot (IBS)

« 2*Malecot coefficients of identity (by state)

* |t considers that every allele of every SNP
IS a gene
« Corresponds to a linear model in which

every allele of every SNP has an effect,

and this SNP has « a priori » O mean (this is
a problem)

— (size of a = 2 * number of SNPSs)
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MOSt common G Van Raden (2008), Amin et al.
(2008), Astle & Balding (2009), Yang et al. (2010) (Second G)

« Estimator of relationship

ik pk)(gjk_ pk)
P (1-py)

1 (9
G, =2-%

« We estimate a relationship by locus, and then we
estimate its average

* Less polymorhic locus have more weight
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Paul Van Raden (2008) »first G »

« Compute a covariance by each locus

« And divide by average variance (implicitely in H-
W, linkage equilibrium)

Gijzle(gik_pk)<gjk_pk) G Z7'

Y b (1-p,) " 25 p,(1-p,)

« More intuitive as a linear mixed model
— Corresponds to the work of Gianola (2009)
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Some properties

* In H-W, Linkage equilibrium
— Average of Diag(G) =1
— Average off-diagonal(G) =0
— Average genetic value of genotyped
individuals =0
— This corresponds to the definition of base
population
* With average inbreeding F,
— Average of Diag(G) = 1+F
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Mixing molecular & pedigree
relationships

« Many animals do not have genotypes and it would be nice to
Include them in the genomic relationship matrices

« There are two attempts to do so (Legarra et al., 2009; Christensen
& Lund, 2010)

« Both use pedigree-based “predictions” (and their variances) of
genetic values or SNP genotypes and arrive to the same result

u H H
Vark 1J=H:[ 11 12}: . |
u, H21 H22 H — A + I_O 0 —I
ALALRGALA, AL - ALALA, ALALG {0 G- AZJ
GA LA, G

« Hhas been used in one-step genetic evaluation (Aguilar et al.,
2010)

* Still not well understood
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Unsolved problems

* Full compatibility of « genomic
« pedigree » relationships

— Only important if we want to mix
iInformations (as in the single-ste

— We need thus the same genetic

» and

noth
D procedure)

DaSe.

e Same constraint on the genetic values (average

breeding value of the base = 0)
« Same genetic variance

* Achieved using base allelic frequencies
— But these are impossible to estimate (well)
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Unsolved problems

* Ad-hoc corrections:
— Scaling: divide ZZ' by its trace and not 2> p, (1- p;)
« Useful if there is not H-W
— Sum to achieve same average coancestry

t : -
G'=G+11 '« a=5[X X Ap iy X G‘
i I J

n i

« Very useful if there is selection (Vitezica)
— Regress G on A (Van Raden)
MM' = g11" + g;A + E,
« Multiple breed version (Harris & Johnson)

ki)

G Ll}}l—l[zzr ZEI-:.#!"FI-: ]Flr_ll‘ls
- k=l 1 29



Unsolved problems

* Possibly, a correction based on Wright's
st can be achieved (suggestion by ME Goddard)

| | | . | <; Base )
1= F )= 1S s\l = fsr) 4 [t

/enotyped f
K \/
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G for a
crossbred
population

(Harris &
Johnson)

« Before
correction

1964

-
g
2 2008, 1967
£ Holstein—Friesian
o
2008, 1994
2008
1964 2008, 1967 2008, 1994 2008
Birth year
1.20 L
.
. .

G matrix diagonal element

Too high
inbreeding

" HFxJ

1964 2008, 1967 2008, 1994 2008
Birth year

Holstein-Friesian ** « Jersey

Figure 2. Heat map of genomic relationship matrix estimated
ignoring breed and using whole-population SNP frequencies; darker
areas correspond to a greater degree of relationship. The lower graph
displays diagonal elements. HF = Holstein-Friesian; J = Jersey.
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Figure 1. Heat map of genotyped block of average relationship
matrix; darker areas correspond to a greater degree of relationship.
The lower graph displays diagonal elements. HF = Holstein-Friesian:
J = Jersey.



Real results (AMASGEN)
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(whole) Pedigree-based
Little inbreeding relationship

(,11 0,21 [,3] [,4) [,5]1 [,61 [,71 [,8] [,9]
[1,] 1.00 0.51 0.57 0.51|0.26 0.15 0.15 0.14 0.14
[2,] 0.51 1.01 0.30 0.33[0.17 0.17 0.12 0.11 0.11
(3,1 0.57 0.30@.070.30/0.20 0.12 0.18 0.11 0.12
(4,1 0.51 0.33 0.30 1.01/0.17 0.18 0.11 0.11 0.11
[5,]1 0.26 0.17 0.20 0.17[1.00 0.56 0.51 0.52 0.53
[6,] 0.15 0.17 0.12 0.18|0.56 1.06 0.31 0.32 0.32
(7,1 0.15 0.12 0.18 0.11]0.51 0.31 1.01 0.30 0.29
(8,1 0.14 0.11 0.11 0.11]0.52 0.32 0.30 1.02 0.30
[9,] 0.14 0.11 0.12 0.11[0.53 0.32 0.29 0.30 1.03

Relationships among cousins are ~ 0.125



"Second G” genomic relationship

Less than 1 in the diagonal Negative coefficients
@ [,21 [,31 [,4]1 [,51 [,6] 8] [,9]
[1, .40 0.43 0.38/0.12 0.04 O. 0.10
[2,] 040 0.91 0.18 0.24]0.02 0.05 -0. 0.04
[3,] 0.43 0.18 0.88 0.19/0.07 0.00 O. 0.05
(4,] 0.38 0.24 0.19 0.86]0.02 -0.01 -0. 0.03
[5,] 0.12 0.02 0.07 0.02/0.73 0.34 O. 0.35
[6,] 0.04 0.05 0.00 -0.01 0.34 0.85 O. 0.18
(7,17 0.04 -0.04 0.07 -0.02 0.30 0.15 O. 0.17
[8,] 0.01 -0.04 -0.02 0.01 0.31 0.14 O. 0.17
(9,1 0.10 0.04 0.05 0.03 0.35 0.18 O. 0.85

Relationships among cousins are ~0

I.EZ(QW"pk)<gW__pk)

G, =2—

n Zpk(l_ pk)
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“First G” genomic relationship

Closer to 1 in the diagonal

ﬂl!i!il'[IZ] [,31 [,4] [,5]

(1, 0.44 0.47 0.42]0.14 O
[2,] 044 1.01 0.20 0.27/0.02 O
[3,] 0.47 0.20 0.98 0.21/0.07 O
[4,] 0.42 0.27 0.21 0.96/0.02 -0
[5,] 0.14 0.02 0.07 0.02/0.81 O
[6,] 0.05 0.06 0.00 -0.01 0.37 O
[7,] 0.05 -0.04 0.08 -0.02 0.33 O
[8,] 0.02 -0.04 -0.02 0.01 0.35 O
[9,] 0.11 0.04 0.05 0.04 0.39 O

Very similar but more “exaggerated”

1< (9= p)(9;—p)
n P (1-py)




Maléent nenomic relationship

Large coefficients

This IS because It assumes that the

two alleles at one locus are

1.34 1.34 1.36
Independents 1.34 1.3Q .33
1.32 1.35 1.31 1.33

4,11 45 1 .39 1 .38 1. 631,34 1 .32 1 .31 1,32 1 .33
[5,] 1.38 1.34 1.36 1.34|1.65 1.48 1.46 1.47 1.48
[6,] 1.34 1.34 1.32 1.32|1.48 1.66 1.39 1.39 1.40
[7,] 1.34 1.30 1.35 1.31|1.46 1.39 1.64 1.39 1.40
[8,] 1.33 1.30 1.31 1.32|1.47 1.39 1.39 1.64 1.40
[9,] 1.36 1.33 1.33 1.33[1.48 1.40 1.40 1.40 1.66
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“Second G” genomic relationship after Yang et al. correction
for the diagonal

Very close to 1 in the diagonal Negative coefficients
@ [,21 [,31 [,41 [,51 [,6] 81 [,9]
[1, .40 0.43 0.38/0.12 0.04 O. 0.10
[2,] 040 1.00 0.18 0.24]0.02 0.05 -0. 0.04
[3,] 0.43 0.18 0.98 0.19/0.07 0.00 O. 0.05
[(4,] 0.38 0.24 0.19 0.96/0.02 -0.01 -0. 0.03
[5,] 0.12 0.02 0.07 0.02/0.93 0.34 O. 0.35
[6,] 0.04 0.05 0.00 -0.01 0.34 0.99 O. 0.18
(7,17 0.04 -0.04 0.07 -0.02 0.30 0.15 O. 0.17
[8,] 0.01 -0.04 -0.02 0.01 0.31 0.14 O. 0.17
(9,1 0.10 0.04 0.05 0.03 0.35 0.18 O. 0.98

Relationships among cousins are ~0
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G for a
crossbred
population

(Harris &
Johnson)

« Before
correction
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Figure 2. Heat map of genomic relationship matrix estimated
ignoring breed and using whole-population SNP frequencies; darker
areas correspond to a greater degree of relationship. The lower graph
displays diagonal elements. HF = Holstein-Friesian; J = Jersey.
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Figure 1. Heat map of genotyped block of average relationship
matrix; darker areas correspond to a greater degree of relationship.
The lower graph displays diagonal elements. HF = Holstein-Friesian:
J = Jersey.



Use of G

* Genomic selection (GBLUP)

« Estimation of genomic parameters
(GREML)

— In populations with no pedigree recording

— How much variance due to SNPs, how to

pedigree

* Improved association analysis model (vuet
al...)

-y =SNP;+g + e, g ~N(0,Go?)
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Conclusions

« Genomic relationships work very well and
are (now) well defined

* The exact formula depends on the
Interpretation but results do not change
much

* Unless somebody wants to combine
pedigree and molecular relationships
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Common SNPs explain a large proportion of the herltablhty
for human height

Jian Yang!, Beben Benyamin!, Brian P McEvoy!, Scott Gordon!, Anjali K Henders!, Dale R Nyholt!, -
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* Or: The « missing » heritability was always
there
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Missing heritability

* Found SNP variants explaining height
explain a very small fraction of heritability

* Most likely explanation lots of variations
and little power
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In the paper

Use a mixed model to estimate heritability
Explain we do they found less than expected

They say it's because typical QTLs have <0.1
MAF

What | think
— | don't fully believe their explanation
— But it is a possibility
— And the methods are very interesting
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Methods

Estimate heritability by REML using SNPs in « unrelated »
population and a genomic relationship matrix

Kinship estimated using slightly modified formula with
correction for the diagonal

_z {TU 2y N x; ZP:.J,j;tﬁ:
1 N EP:{I_ P;
Ajk = =D Ajik = 3
N =i
1+iz "'::Jr (1+ 2p) % +2P: i=k
NS apl-p)

« Unrelated » individuals: relationships from -0.025 to 0.025
— Is this not a problem?
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Results

» Estimate of h2 = 0.45 (+- 0.08)
 Usual estimate i1s 0.8
 Why?
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Is « relationship » a « true »
relationship?

« Hypothesis: SNP do not provide realistic estimates of
relationships because they are not « true » QTLs
— What if QTLs have smaller MAF than SNPs?
— Then relationships are « under » estimated

— Can be checked by comparing A; estimated with SNPs at low
MAF and A; estimated with all

) ﬁﬂj,i.;:,fi-‘i ﬁzl_[c+1fh}
Ay = _ var( A J'Ff]
o+ BAg -1, j=k

« Assume MAF of QTLs is <0.1, then re-compute A*
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Results 2

» Estimate of h2 = 0.84 (+- 0.16)
* Usual estimate is 0.8
* Are we happy?

This does not prove that the causal variants have MAF < 0.1, but it
shows that if this were the case, they could explain the estimated
heritability of height (~0.8).
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Conclusions

* Missing heritabllity is there, but GWAS
tests are just too stringent. Random
models overcome this problem.

* Possibly, not all causal variants are well
tagged by SNPs

— (problem of SNP chip but also of amount of
data)
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Criticism

* Why do we need to correct the genomic
matrix?

— Estimates of 0.8 can possibly be obtained
with « uncorrected » pedigre relationship
matrix?

* |s the second heritability « the same »?
— Do they refer to the same genetic base?
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Short example: g~ G 02

Variance of the base population

These two formulations parent-son are 9
equivalent

s the first less inbred with more variance or (u;) (1 0.5)
. . . ~ 1.1
the second less inbred with more variance? Lu J LO.S 1 J

If we manipulate G, we possibly refer to

different things ug) (1.1 0.55)

(uf(o.Ss 11 )7
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Real example (mice data)

* | took one G computed for the mice data and estimated
variance components with G, and with G* = G*0.5

« The heritability increases artificially

varg varu varc vare h?
Body length
A 0.038 0.048 0.147 0.16
G 0.035 0.050 0.149 0.15
G*=G*0.5|0.071 0.050 0.149 0.26
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Criticism

Is this just a problem of wrong estimation?
Large standard error in estimation of h?

If we have very little genetic information (individuals are
unrelated), how can we estimate heritabilities?

— Low relationships -> possible bias

— Bias of heritability depends on the relationship (Ponzoni and

James, 1978): | |
-t -t
=2(1-t) (t+ —) (t+—)
E(t-t) ~ r; SI
S..

— For s=100 couples of n=2 individuals related by 0.001 expected
bias of h? is -0.26
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(My) Conclusion

Very interesting paper

They are right that heritability is not missing and
that mixed models can estimate it correctly

| think that using « unrelated » individuals
causes them problems in estimation

| also think that SNP do not completely trace
causal variants, but not only because of MAF
(small effects, epistasis)
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