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Haplotypes

 Haplotypes can provide valuable information in the study 
of:

 complex traits

 diseases

 population histories 

 evolutionary genetics 

 current genotyping technologies are unable to resolve the phase 
of maternal and paternal chromosomes in unrelated individuals

Haplotype: a sequence of alleles that are on the same physical chromosome (i.e. 
inherited from the same parent)



Haplotypes (cont.)

 Haplotypes analysis can provide improved power to detect 

associations between complex traits and densely spaced 

genetic markers

 Most methods for multilocus analysis  that are suitable  for 

whole-genome association data required phased haplotypes



Haplotype inference

 Multinomial model for haplotype frequencies: 
 No prior information about the haplotype frequency distribution 

 Expectation-Maximization (EM) algorithm are used to maximize the likelihood (Long 

et al., 1995; Hawley et al., 1995)

 Coalescent-based Bayesian method:
 It can make predictions about the patterns of haplotypes to be expected in natural 

populations (PHASE, Stephens et al., 2001)

 Takes into account similarities between and among haplotypes

 It produces accurate results, but the application is limited for large data sets

 Haplotype blocks
 Haplotype blocks do not properly explain all the correlation structure between 

markers, because linkage disequilibrium (LD) can extend beyond block boundaries 

and can have complex patterns within block (Halperin and Eskin, 2004)

 Methods based on Hidden Markov Model (HMM)



Papers reviewed

 Human genetics (5)

 Unrelated populations, exploit LD information 

 Animal genetics (3)

 Exploit family (linkage) & LD information



Human genetics papers

1) To cluster haplotypes and to perform association analysis (Li et al., 

2006)

2) To infer missing genotype data  (Marchini et al., 2007)

3) To infer haplotype phase and missing genotype data based on 

clustering algorithms

3.1)  Scheet and Stephens (2006)

3.2)  Browning and Browning (2007)

4) To perform an Imputation-based Bayesian regression analysis 
(Servin and Stephens, 2007)



Animal genetics papers

5) To estimate IBD probabilities using linkage (LA) and linkage 

disequilibrium (LD) information (Meuwissen and Goddard, 2001)

6) To cluster haplotypes based on IBD probabilities, and  to perform  a 

variance component analysis to map QTLs (Druet et al., 2008)

7) To simultaneously infer haplotypes and missing genotypes and 

cluster haplotypes combining LA and LD information, and to 

perform a variance component analysis to map QTLs (Druet and 

Georges, 2010)



Methods used in human genetics

 Genome-wide association studies (GWAS): scan the entire genome 

for variants that are associated with a trait or disease of interest

 To improve the power of GWAS different strategies can be adopted 
(Browning, 2008): 

1) To infer haplotype phase and use haplotype-based methods for 

association testing in addition to single-maker association

2) To use missing data imputation to infer genotypes for known reference 

panels (e.g. HapMap) 

3) To combine results across multiple studies, imputing genotypes when 

SNPs have been genotyped in some, but not all the studies



1) Method to cluster haplotypes and to 

perform association analysis (Li et al., 2006)

 A distance-based mapping method based on data mining 
techniques

 The idea: haplotypes carrying trait loci tend to be more similar to 
each other than haplotypes drawn at random from the population

 The QTL association mapping is based on haplotype information 
from unrelated individuals

 Clusters are identified using a density-based clustering algorithm

 The method is implemented in the software HapMiner

Li  et al. (2006). Haplotype-based quantitative trait mapping using a clustering algorithm



Methods
 Phased genotypes (haplotype pairs) have to be provided

 The algorithm scans each marker one by one

 For each marker position, a haplotype segment with certain length centered 

at the position is considered

 Clusters are identified based on a similarity measure via a density-based 

clustering algorithm

 For each cluster, a Q-score based on the t-statistics is calculated, 

representing the deviation of the phenotypic mean of the cluster from the 

phenotypic mean of all other samples

 The Q-score indicates the degree of association between the cluster and 

the phenotype

Li  et al. (2006). Haplotype-based quantitative trait mapping using a clustering algorithm



Similarity score (Li & Jiang, 2005)

It combines:

 The length of the shared segments

 The number of common alleles around any marker position of the 

haplotype (Hamming similarity)

 This measure captures both:
 The sharing of haplotype segments due to historical recombination 

events 

 It incorporates recent mutations and/or genotype errors

Li  et al. (2006). Haplotype-based quantitative trait mapping using a clustering algorithm



Similarity Score (cont.)

e.g.:  similarities between haplotypes (h1 and h2) and (h3 and h4):

h1 =  (11212)   h2 = (12222)  

h3 =  (11221)   h4 = (21222)

 both pairs have three common allele

 h3 and h4 share a longer segment

 Similarity: the length of the longest common interval around the third locus in 

the middle, then:

s(h1,h2) = 0 

s(h3,h4) = 2 

Li  et al. (2006). Haplotype-based quantitative trait mapping using a clustering algorithm



Similarity Score (cont.)

 xk = the genetic/physical distance from any locus to locus 0 (-l ≤ k ≤ r. )

 w1 and w2 =  weights

The first summation:  is a weighted measure of the number of alleles in 

common between haplotypes hi and hj in the region

The remaining summations:  form a weighted measure of the longest 

continuous interval of matching alleles around locus 0

For a pair of haplotypes hi, hj, the similarity score with respect to locus 0 is:

Li  et al. (2006). Haplotype-based quantitative trait mapping using a clustering algorithm



Weight functions

 Weight functions:  are  based on the distance of a marker to the 

reference marker

 They are calculated as the linkage disequilibrium coefficient such as 

D’(x0,xk) between a locus k and the reference locus 0

 This proposed weight not only captures much information within 

block, they can also incorporate some moderate LD between blocks

 HapMiner automatically calculate the values of D’

 Haplotype segment length is set by the user

Li  et al. (2006). Haplotype-based quantitative trait mapping using a clustering algorithm



Density-based algorithms

 They are based on the notion of local density:
 High density areas form clusters and low density areas may be due to 

random noise 

 For the clustering, the DBSCAN algorithm (Density Based Spatial 
Clustering of Applications with Noise) (Ester et al., 1996) 

 DBSCAN examines every haplotype and start to construct a cluster once a core 
haplotype is found

 Then,  iteratively collects directly reachable haplotypes from a core haplotype, 
merging clusters when necessary

 The process terminates when all haplotypes have been examined 

 Clusters are output and the haplotypes that do not belong to any cluster are 
regarded as noise

Li  et al. (2006). Haplotype-based quantitative trait mapping using a clustering algorithm



Association analysis

 It is based on the t-statistics which assume that the haplotypes in the cluster 

and the remaining haplotypes are sampled from two different populations 

 To assess the significance of the predicted gene position a permutation test

is used to obtain empirical p-values (i.e. shuffling the phenotypes among the 

haplotypes)

Li  et al. (2006). Haplotype-based quantitative trait mapping using a clustering algorithm

Q-score: measure the degree of association of a cluster and the quantitative trait 

m = the number of haplotypes in the cluster

n =  the number of remaining haplotypes

c
u

2

c
 the sample mean and the variance of 

the m haplotypes within the cluster

r
u

2

r
 the sample mean and the variance of 

the n remaining haplotypes

A large Q-score means a strong association between the cluster (i.e. haplotypes within the cluster) and the trait



Haplotype phase and missing 

genotype inference

 In human genetics, thousands of individuals are genotyped for 

hundreds thousands of SNPs

 Although the SNPs data is very large, still a larger proportion of 

SNPs remain untyped

 Thus, genotype imputation methods have become increasingly 

popular for recovering untyped genotype data 

 The methods rely on Hidden Markov Models (HMM)



What is a HMM?

Probabilistic parameters of a hidden Markov 

model (example)

x — states

y — possible observations

a — state transition probabilities

b — output probabilities

A hidden Markov model (HMM) is a statistical Markov model 

in which the system being modeled is assumed to be a 

Markov process with unobserved state

An HMM can be considered as the simplest dynamic 

Bayesian network

-In a regular Markov model, the state is directly visible to the 

observer, and therefore the state transition probabilities are 

the only parameters. 

-In a hidden Markov model, the state is not directly visible, 

but output, dependent on the state, is visible. 

From http://en.wikipedia.org/wiki/Hidden_Markov_model



What is a HMM?

 In a HMM, an underlying hidden (i.e. unobserved) states 

generates the observed data (Rabiner, 1989) 

 In the context of haplotype phase and missing genotype 

inference:
 the observed data are the observed unphased genotypes (errors and/or 

missing data),

 while the hidden state represents the haplotype phase and true genotypes 

 A Markov Model is applied to the hidden states along the chromosome

 They have a very simple probabilistic structure that results in a 

relatively parsimonous model and facilitates computation

 The observed data at a marker depend only on the hidden state at the 

marker (the hidden state is said to “emit” the observed data)

Browning (2008)



2) Method to infer missing genotype data  

(Marchini et al., 2007)

 A model-based imputation method for inferring genotypes at 

observed and unobserved SNPs
 The aim:  to improve power in multipoint association mapping

 The main idea: to combine observed data and missing data
 to predict (or “impute”) the missing data based upon the observed data

 It uses an approximate population genetics model:
 It gives more weight to genotypes that are consistent with the local patterns of LD

 It uses information from all the markers in LD with an untyped SNP, but in a way 

that decreases with genetic distance from the SNP being imputed

 There is no need to specify the number of markers to be used, how to use them, 

and the physical distance to define haplotypes for haplotype analysis

 The method is implemented in the software IMPUTE

Marchini et al. (2007). A new multipoint method for genome-wide association studies by imputation of genotypes



Methods

 Where Z = {Z1, .., ZL} with  Zj = {Zj1, Zj2} and Zjk = {1, ..,N}.  The Zj can be though of as 

the pair of haplotypes from the reference panel at SNPj that are being copied to 

form the genotype vector Gi. 

 The term Pr(Z|H, ρ) models how the pair of  copied haplotypes changes along the 

sequence and is defined by a Markov chain in which the switching between states 

depends on an estimate of the fine-scale recombination map (ρ) across the 

genome.

 The term Pr(Gi| Z, θ) allows each observed genotype vector to differ through 

mutation from the genotypes determined by the pair of copied haplotypes and it is 

controlled with the mutation parameter θ.

It is based on a HMM of each individual’s vector of genotypes, Gi, conditional 

on H (a set of N haplotypes), and a set of parameters. The model is written as:

Marchini et al. (2007). A new multipoint method for genome-wide association studies by imputation of genotypes



Methods (cont.)

 The fine-recombination map (in cM/Mb) is estimated from the 

phase II HapMap 
 It is used as a fixed set of parameters in the models and is scaled by an estimate 

of the effective population size (Ne) to obtain the population scale recombination 

map across the region

 The mutation parameter θ is fixed internally by the program 

 Ne must be set by the user

Marchini et al. (2007). A new multipoint method for genome-wide association studies by imputation of genotypes



Methods (cont.)

 The exact marginal probability distribution of each possible 

genotype (0, 1, 2) for the missing  genotypes that are conditional on 

the observed  genotype  in the vector Gi are obtained using a 

forward-backward  algorithm

 It also provides a probability distribution for each called genotype to 

facilitate correction of genotyping errors 

 These probabilities can be used to carry out an association test

at all typed and untyped SNPs

Marchini et al. (2007). A new multipoint method for genome-wide association studies by imputation of genotypes



Association test

 The imputation model generates probability distributions of untyped 

genotypes

 Once genotypes have been imputed, a test of association can be 

carried out at a much larger set of SNPs than the one originally 

typed 

 By testing each SNP in turn, it is assumed that disease variants will 

be detected based on their marginal effects

 A single-SNP test of association takes this uncertainty into account

 It involves Bayesian statistics  (Bayes Factor)

Marchini et al. (2007). A new multipoint method for genome-wide association studies by imputation of genotypes



3.1) Method to infer haplotype phase and missing 

genotype by clustering haplotypes  (Scheet and 

Stephens, 2006) 

 The idea:  over short regions, haplotypes in a population tend to cluster into 

group of similar haplotypes

 Clustering tends to be local in nature: as a result of recombination, those 

haplotypes that are closely related to one another and therefore similar will 

vary as one moves along the chromosome

 The model allows:

 clusters memberships to change continuously along the chromosome 

according to a HMM

 for both “block-like” patterns of LD and a gradual decline in LD with 

distance

 The method is implemented in the software fastPHASE

 It is applicable to large data sets

Scheet  & Stephens (2006). A fast and flexible statistical model for large-scale population genotype data: 

applications to inferring missing genotypes and haplotypic phase.



Column: a SNP Row: estimated pair of haplotypes for 

successive individuals

Colors: estimated cluster membership 

of each allele, which changes as one 

moves along each haplotype

Scheet  & Stephens (2006). A fast and flexible statistical model for large-scale population genotype data: 

applications to inferring missing genotypes and haplotypic phase.

-Each cluster can be thought of as (locally) representing a common haplotype, or 

a combination of alleles, 

-The HMM assumption for cluster membership results in each observed haplotype 

being modeled as a mosaic of a limited number of common haplotypes



Methods
 The model specifies a set of K unobserved states or clusters that 

represent common haplotypes 

 Each individual’s genotype data is modeled as a HMM on this state 

space with transitions between states controlled by a set of 

parameter (r) at each SNP 

 The probability of Gi is obtained as:

α  = a weight that denotes the fraction of haplotypes it contains a site l

θ = the associated frequency of allele 1 at each site (for each cluster)

P(Gi|Zi,θ) = models how likely the observed genotypes are given the underlying states

P(Z|α,r)  = models patterns of switching between states, where states represent clusters

Scheet  & Stephens (2006). A fast and flexible statistical model for large-scale population genotype data: 

applications to inferring missing genotypes and haplotypic phase.



Methods (cont.)

 Missing-genotype imputation:

 This method imputes genotypes marginally and provides “best guess”

for each genotype

 It sample from the joint distribution of the missing genotypes given 

observed-data, e.g., by sampling from the conditional distribution of the 

haplotypes for all individuals

 Haplotype inference:

 Sampling the pairs of haplotypes of all individuals from their joint 

distribution given the unphased genotype data 

 it provides a useful way to asses or account for uncertainty in 

haplotype estimates



Methods (cont.)

 EM algorithm

 Results across applications of the EM algorithm are averaged

 It provides much better results than choosing a single best estimate

 Number of clusters:

 fastPhase can choose an optimal number of clusters (5, 10 and 15)

 For large data sets, between 20 and 30 clusters 

 Computation times increases quadratically with the number of clusters

Scheet  & Stephens (2006). A fast and flexible statistical model for large-scale population genotype data: applications to 

inferring missing genotypes and haplotypic phase.



3.2) Method to infer haplotype phase and missing 

genotype data by clustering haplotypes Browning 

and Browning (2007)

 It is a novel application of the localized haplotype-cluster model used 

for association testing (Browning and Browning, 2007; Browning, 2006)

 The localized haplotype-cluster model is an empirical LD model that 

adapts to the local structure of the data

 It uses an iterative approach for phasing haplotypes

 It is implemented in the software Beagle:

 single marker and multilocus association analysis,  permutation 

testing

 It can be applied to large whole-genome data sets

Browning &  Browning (2007). Rapid and accurate haplotype phasing and missing-data inference for whole-

genome association studies by use of localized haplotype clustering.



Localized haplotype-cluster 

model

 It is a special class of directed acyclic graph (DAG) 

 It defines a Hidden Markov Model that can be used to sample 

haplotype pairs or to find the most likely haplotype pair for each 

individual conditional on the individual’s genotypes

 The phasing algorithm involves iteratively sampling haplotypes 

pairs and building the localized haplotype-cluster model from the 

sampled haplotype pairs

Browning &  Browning (2007). Rapid and accurate haplotype phasing and missing-data inference for whole-

genome association studies by use of localized haplotype clustering.



Localized haplotype-cluster 

model

 It makes use of the localized LD, which empirically models haplotype 
frequencies on a local scale

 Correlation between markers is a localized phenomenon, since LD decays 
with distance

 It clusters haplotypes at each marker to improve prediction of alleles 
at markers t+1, t+2, t+3,.., given alleles at marker t, t-1, t-2, …on a 
haplotype

 This is achieved by defining cluster according to a Markov property: 
given cluster membership at position t, the sequence of alleles at 
markers t, t-1, t-2, … is irrelevant for predicting the sequence of alleles 
at marker t+1, t+2, t+3,…

Browning &  Browning (2007). Rapid and accurate haplotype phasing and missing-data inference for whole-

genome association studies by use of localized haplotype clustering.



Directed acyclic graph (DAG)
 The edge, e, represents a cluster of haplotypes consisting of all haplotypes whose path 

from the initial node to the terminal node of the graph traverses e.

 Haplotypes are defined over the whole chromosome, but haplotypes within a cluster 

corresponding to an edge at level m will tend to have similar patterns of alleles at markers 

immediately to the right of marker m.  

 Each edge defines a localized haplotype cluster that is determined by local LD 

pattern. 

 Recombination between haplotypes is modeled as merging edges

Figure 1. Example of a DAG representing the

localized-cluster model for 4 markers. Edge eF

includes haplotypes 1111, 1112, 2111 and

2112. The bold-lines edges from the root to the

terminal node represent the haplotype 2112.

For each maker, allele 1 is represented by a

solid line and allele 2 by a dashed line. The

node marked by an asterisk is the parent of

node eF .

Browning &  Browning (2007). Rapid and accurate haplotype phasing and missing-data inference for whole-

genome association studies by use of localized haplotype clustering.



The induced HMM

 A localized haplotype-cluster model determines an HMM 
 the states of the HMM are the edges of the localized haplotype-

cluster model, and the emitted symbol for each state is the allele 

that labels the edge of the localized haplotype-cluster model

 HMM
 emission probabilities

 initial-state probabilities, and 

 transmission probabilities 

 The initial-state probabilities and the transition probabilities are 

computed from the edge counts.

Browning &  Browning (2007). Rapid and accurate haplotype phasing and missing-data inference for whole-genome association 

studies by use of localized haplotype clustering.



The Beagle Phasing algorithm

 The phasing algorithm samples from diploid HMM conditional on 
the observed data by use of a forwards-backwards algorithm

At each iteration of the algorithm:
 Phased input data are used to build a localized haplotype-cluster 

model

 Phased haplotypes for each individual are sampled from the 
induced diploid HMM conditional on the individual’s genotypes

 The sample haplotypes are the input of the next iteration

 At the final iteration, the Viterbi algorithm is used to select the most-
likely haplotypes for each individual, conditional on the diploid HMM 
and the individual’s genotype data

 The most-likely haplotypes are the output of the phasing algorithm



4) Method to perform an Imputation-based 

Bayesian regression analysis (Servin and 

Stephens, 2007)

 It is a new methodology for using imputed values in association testing

 BIM-BAM uses fastPHASE to perform the imputation of genotypes

 Missing data are imputed multiple times, with the imputed values being 

used in a Bayesian regression approach to test for association

 Implemented in the package BIM-BAM (Bayesian Imputation-Based 

Association Mapping)

 It is applicable for whole genome association studies and candidate 

gene studies

Servin  & Stephens (2007). Imputation-based analysis of association studies: candidate regions and quantitative traits



 It has an improvement on standard analysis by exploiting available 

information on LD among untyped and typed SNPs

 Partial information can be available from:

 the International HapMap project

 resequencing data available from public data bases

 data collected from association study designs

 the approach combines this background knowledge of LD with 

genotypes collected at typed SNPs in the association study, to 

predict (“impute”) genotypes in the study sample at untyped SNPs

Servin  & Stephens (2007). Imputation-based analysis of association studies: candidate regions and quantitative traits



Association study design

 Observed genotypes (Gobs ): genotype data available for a dense 

set of SNPs on a panel of individuals

 Tag SNPs: genotypes available for a subset of these SNPs on a 

cohort of individuals who have been phenotyped for a quantitative 

trait 

 The strategy:

 To use patterns of LD in the panel together with the tag SNP genotypes in 

the cohort to predict the genotypes at all makers for the members of the 

cohort

 To analyze the data as if the cohort had been genotyped at all markers 

(tag and non-tag) 

Servin  & Stephens (2007). Imputation-based analysis of association studies: candidate regions and quantitative traits



Association study design 
(cont.)

 fastPHASE is used to generate multiple imputations for the 

complete genotype data (all individuals at all SNPs) by sampling 

from P(G/Gobs)

 These imputations are incorporated in the inference which involves 

adding a step in the MCMC scheme to sample the imputed 

genotypes from their posterior distribution given all data and 

averaging relevant calculations over imputations

Servin  & Stephens (2007). Imputation-based analysis of association studies: candidate regions and quantitative traits



yi = the phenotype for individual i

u = the phenotype mean of individuals carrying the “reference” genotype

xijs = the elements of the design matrix X (which depends on the genotype data)

βjs = the corresponding regression coefficients

εis = independent and identically distributed ~N(0,1/τ), where τ denotes the inverse of the 

variance

Standard linear regression

Servin  & Stephens (2007). Imputation-based analysis of association studies: candidate regions and quantitative traits



Bayes Factor

 Bayes Factor (BF):  BF = P(y|G, H1) / P(y|G, H0)

 H0 denotes the null hypothesis that none of the SNPs is a QTN 

(aj=dj=0 for all j)

 H1 denotes the complementary effect (i.e. at least one SNP is a 

QTN)

 Computing BF involves integrating out unknown parameters

 A p-value for testing H0 can also be obtained from a BF through 

permutation

Servin  & Stephens (2007). Imputation-based analysis of association studies: candidate regions and quantitative traits



SUMMARY



HapMiner

 It is an efficient method for whole-genome studies given that the 

sliding window of haplotypes is not very large

 Limitation: required phased haplotypes as input

 Association analysis: HapMiner was more robust and achieved 

better power than the single-marker association analysis under the 

simulated scenarios

 The effectiveness of the method depends on the similarity measure 

of haplotype fragments and the clustering algorithm



Beagle & fastPHASE

 Conceptually, both methods are similar

 Difference:
 Beagle: allows the number of clusters vary from one position to 

another

 fastPHASE:  the number of cluster is fixed

In Beagle, the graph will have few or many edges in regions in which there 

is low or high LD, respectively

 The number of cluster can vary at each locus and complex 

recombination patterns can be found in the data ☺



Beagle & fastPHASE (cont.)

Parameter estimation:

 fastPHASE: a large number of parameters (definition of haplotype 

cluster and recombination and mutation rates) need to be estimated

 For realistic data sets is expected that all parameters to be not well 

correctly estimated  (Scheet and Stephens, 2006)

 Beagle:  there is not need to estimate parameters such as 

recombination and mutation rates

 Thus, the Beagle model is more parsimonious

 It  makes computation faster

 It seems to have an effect in the number of iterations required compared 

to fastPHASE (Browning, 2008)



BIM-BAM

 BIM-BAM uses fastPHASE to perform the imputation and includes 

a new approach for using imputed values for test association

 Missing data are imputed multiple times and the imputed values are 

used in a Bayesian regression analysis

 An interesting point about this approach:

 It tests variants about which something is known (i.e. SNPs that are 

known to exist and have documented patterns of LD) and exploits this 

information

 This idea is more compelling than testing hypothetical untyped variants 

about which nothing is known, like in fastPHASE (Servin and Stephens, 

2007)



Comparison among methods
 Accuracy (e.g. error rate) & performance (e.g. computing time) of the different 

software

 different data sets (i.e. number of markers and individuals) & different assumptions

 Sheet and Stephens (2006): 

 fastPHASE was as accurate than PHASE, GERBIL, HaploBlock 

 For haplotype estimation, fastPHASE was slightly less accurate than the other 

methods, but required a small fraction of computational cost

 Browning and Browning (2007): 

 Beagle outperformed fastPHASE, HaploRec, Hap and 2SNP in terms of speed and 

accuracy (3,002 individuals genotyped for 490,032 markers with 99% of masked 

alleles imputed correctly)

 Marchini and Howie (2010):

 IMPUTE was at least twice as fast as both Beagle and fastPHASE to impute 

genotypes using a reference panel of 1000 haplotypes



Animal genetics

5) To estimate IBD probabilities using linkage (LA) and linkage 

disequilibrium (LD) information (Meuwissen and Goddard, 2001)

6) To reconstruct  haplotypes using LA information, cluster haplotypes  

based on IBD probabilities, and  to perform  a variance component 

analysis to map QTL (Druet et al., 2008)

7) To simultaneously infer haplotypes and missing genotypes 

(combining LA and LD information) and sort  haplotypes  clusters  

and to perform a variance component analysis to map QTL (Druet 

and Georges, 2010)

https://intranet4.jouy.inra.fr/gabi


5- Method to estimate IBD probabilities using 

linkage (LA) and linkage disequilibrium (LD) 

information (Meuwissen and Goddard, 2001)

 The method predicts IBD probabilities at a given chromosomal location 

given data on a haplotype of markers spanning that position

 The probabilities that two gametes are IBD at a particular locus increases 

as the number of markers surrounding the locus with identical alleles 

increases

 It is based on a simplification of the coalescence process, and assumes that 

the number of generations since the base population and effective 

population size is known

 It was developed for the situation where the pedigree of the animals was 

unknown (i.e. all the information come from the maker genotypes), and the 

situation where T generations of unknown pedigree are followed by some 

generations where pedigree and marker genotypes are known

Meuwissen & Goddard (2001). Prediction of identity by descent probabilities from marker-haplotypes



IBD probabilities: one linked marker

The probability that two haplotypes are IBD at some locus of interest

(e.g. locus A) is estimated given one or multiple linked markers

 One linked marker: the probability that the alleles at locus A are IBD 

given the marker data is:

S = an indicator of the Alike in State (AIS) situation of the maker alleles:

S=1 alleles are AIS

S=0 alleles are on AIS

If S=1, the maker locus may be IBD or nonIBD

(1)

Meuwissen & Goddard (2001). Prediction of identity by descent probabilities from marker-haplotypes



IBD probabilities: one linked marker

 (ϕ) (character string) = to summarize the IBD status in the region 

and indicates: 

 if locus A is IBD or nonIBD

 if the marker locus is IBD or nonIBD

 if the region between the two loci is IBD:

 the same common ancestor as the loci (i.e. the region in between the makers 

was inherited as a whole from the same common ancestor without a 

recombination that split the region) 

 there has been a recombination and, if the two loci are IBD, they are probably 

IBD due to different common ancestors

Meuwissen & Goddard (2001). Prediction of identity by descent probabilities from marker-haplotypes



The P(S & A) = IBD can be obtained by summing all over possible IBD 

status, ϕ, with locus A= IBD:

 Σ ϕ / ϕ (1)=1 (Σ ϕ / ϕ (1)=0) =  summation over all possible ϕ vectors where locus A 

is (non)IBD 

 P(S/ ϕ)= the probability of AIS markers denoted by S given the statuses 

denoted by ϕ

 P(ϕ) have to be calculated for all the status

 The P(S & locus A) with IBD and non IBD locus A are combined in equation 

(1) to obtain the probability that locus A is IBD given the linked marker 

haplotype.

Meuwissen & Goddard (2001). Prediction of identity by descent probabilities from marker-haplotypes



IBD probabilities: multiple linked markers

 Equation (1) remains the same, except that the maker 

information is now due to several markers

 S is a (m x 1) vector of AIS status indicators, where m is the number 

of marker loci in the haplotype

 Φ vector is extended by adding two characters for every additional 

locus

 one indicating whether the region between this locus and the 

previous locus was inherited in block from a common ancestor or not

 one character indicating whether the locus is IBD or nonIBD

Meuwissen & Goddard (2001). Prediction of identity by descent probabilities from marker-haplotypes



Pedigree information

 The information on markers splits the pedigree into 2 parts:

 i) Generations where neither pedigree nor maker data is available 

 This pedigree part results in LD marker haplotypes and locus A in the first 

generation of the pedigreed population and thus contains the LD information

 ii) Generations with known pedigree and marker data, although the 

marker information may be missing on some individuals

 This pedigree part contains the linkage information, the inheritance of the 

makers and locus A are traced through the known pedigree and the frequency 

with which recombinations occur yield information about the linkage between 

locus A and the markers

Meuwissen & Goddard (2001). Prediction of identity by descent probabilities from marker-haplotypes



Pedigree information (cont.)

 In livestock pop: some generations of pedigree recorded but non-

genotyped individuals followed by generations of genotyped and 

pedigree recorded animals

 An approximation to calculate IBD probabilities given marker and 

pedigree information, in the situation where the pedigree of 

genotyped animals is known for some generations, but the 

individuals in the pedigree are not genotyped. 

 The approach is analogous to the Wright’s F-statistics:
 markers haplotypes are related due to a finite population size for T generations 

(pedigree part i, Wright’s FST) 

 marker haplotypes are related  due to relationships in the pedigree (pedigree part 

ii, Wright’s FIS). 

Meuwissen & Goddard (2001). Prediction of identity by descent probabilities from marker-haplotypes



The total IBD at locus A given the one generation of marker 

haplotypes and some ancestral generations of pedigree 

(analogous to Wright’s FIT) is:

 PIS(IBD|marker, pedigree) = the IBD probability at locus A due to a 

common ancestor within the pedigree and given the maker 

information (i.e due to recent relationships)

 P(IBD|marker) = the probability  that two regions are IBD before they 

entered the pedigree, i.e due to T generations of random drift in a 

population of size Ne

Meuwissen & Goddard (2001). Prediction of identity by descent probabilities from marker-haplotypes



6- Method to reconstruct  haplotypes using LA information, 

cluster haplotypes  based on IBD probabilities, and  to 

perform  a variance component analysis to map QTL (Druet 

et al., 2008)

 A fine mapping analysis of QTL affecting female fertility in dairy cattle 

on BTA03 using a dense single-nucleotide polymorphism map 

 IBD probabilities  estimation among base haplotypes ( Meuwissen and Goddard, 

2001) 

 These  probabilities  were used to group the base haplotypes in different clusters

 A granddaughter design with 17 half-sib families (926 sons with phenotype & 

genotyped) and pedigree information

 Linkage analysis (regression and VC analysis)

 Linkage and linkage disequilibrium (LDLA)
 VC mapping method that includes information from LD between base haplotypes in 

the construction of the relationship matrix among QTL allelic effects

Druet et al. (2008). Fine mapping of quantitative trait loci affecting female fertility in dairy cattle on BTA03 using single-

nucleotide polymorphism map



Chromosomes were grouped in different categories:  sire chromosome 

(SC) and paternally and maternally inherited chromosomes (PC and 

MC) of the sons. SCs and MCs are considered as base haplotypes. At 

each tested position: 

 Probabilities of transmission are computed to determine to which SC a PC

corresponds. The rules to calculate these probabilities are the same as those 

computed for the linkage analysis. LD information is not taken into account in this 

step

 IBD probabilities (ϕp) are estimated among each pair of base haplotypes 

conditionally on the IBS status of the neighboring markers using a window of 10 

flanking markers (Meuwissen and Goddard, 2001)

 Base haplotypes are grouped with a clustering algorithm with SAS proc CLUST, 

using (1 - ϕp) as a distance measure 

 Base haplotypes were grouped if ϕp > 0.5 (Ytournel et al., 2007). PCs are grouped 

within clusters if: 
 i) the two SCs of a sire are grouped in the same cluster (the PCs of all his sons are 

then grouped in this cluster) or

 ii) a PC can be associated with a base haplotype with a probability > 0.95 (it is 

grouped to the corresponding cluster)

Druet et al. (2008). Fine mapping of quantitative trait loci affecting female fertility in dairy cattle on BTA03 using single-

nucleotide polymorphism map



Mixed model 

 y = the phenotype

 b = vector of fixed effects

 h = vector of random QTL effects corresponding to the haplotype clusters

 Zh = design matrix relating phenotypes to corresponding haplotype cluster

 u = vector of random individual polygenic effects 

 e = vector of individual error term

 Genetic parameters are estimated an AI-REML approach

 Likelihood ratio tests (LRT) are used to confirm the QTL presence at the 

studied position

y = Xb + Zu + Zh h + e 

Druet et al. (2008). Fine mapping of quantitative trait loci affecting female fertility in dairy cattle on BTA03 using single-

nucleotide polymorphism map



Source of information

 In human genetics phasing methods usually exploit population 

information (LD)

 In animal genetics the primary source of information is familial 

(Mendelian segregation and linkage) provided by extended pedigree 

usually available in livestock populations

 A proportion of genotypes are left unphased, especially for the less 

connected individuals

 The use of high density SNPs makes the computation of pairwise IBD 

probabilities (Meuwissen and Goddard (2001)) to be used for haplotype 

reconstruction a difficult and limiting task



7- Method to simultaneously infer haplotypes and missing 

genotypes, to cluster haplotypes combining LA and LD 

information, and to perform a variance component analysis 

to map QTL (Druet and Georges, 2010)

 An approach based on HMM that can simultaneously phase and sort 

haplotypes clusters that can be directly be used for mapping or other 

purposes

 It exploits simultaneously both familial information and population 

information
 LD information:  Beagle and fastPHASE to infer haplotype phase and missing 

genotypes

 It assigns reconstructed haplotypes to hidden states that are shown to 

correspond to clusters of genealogically related chromosomes

 Cluster states can be directly used to fine map QTL

 It can handle large data sets based on high-density SNP panels

Druet  & Georges (2010). A Hidden Markov Model combining linkage and linkage disequilibrium information for 

haplotype reconstruction and quantitative trait locus fine mapping



Haplotype reconstruction and 

clustering 

In livestock populations extended pedigrees are 

available. For the haplotype reconstruction:

 split the pedigreed to consider only relationships 

between genotyped parents and genotyped offspring

 In the ensuing subpedigrees:

 individuals can be parent only

 offspring only

 or parent and offspring

Druet  & Georges (2010). A Hidden Markov Model combining linkage and linkage disequilibrium information for 

haplotype reconstruction and quantitative trait locus fine mapping



Phasing of heterozygous 

SNPs 

 Step1: Mendelian segregation

 Step 2: Linkage information (offsprings and parents)

 Step 3: Linkage disequilibrium

 To complete haplotype reconstruction, LD is exploited using algorithms 

developed either in fastPHASE or in Beagle with modifications

Druet  & Georges (2010). A Hidden Markov Model combining linkage and linkage disequilibrium information for 

haplotype reconstruction and quantitative trait locus fine mapping



Phasing of heterozygous 

SNPs (cont.)

 Step1: Mendelian segregation

 Markers alleles of heterozygotes offspring are assigned to the 

paternal and maternal homolog following Mendelian segregation 

rules

 In offspring, this leaves only SNPs unphased for which parents have 

the same heterozygous genotypes as the offspring

Druet  & Georges (2010). A Hidden Markov Model combining linkage and linkage disequilibrium information for 

haplotype reconstruction and quantitative trait locus fine mapping



Phasing of heterozygous 

SNPs (cont.)

 Step 2: Linkage

 Parents: parental phases are completed on the bases of allelic 

cosegregation in the offspring (Druet et al., 2008)

 This process requires heterozygous “anchoring” markers whose alternate alleles 

define the padumnal vs madumnal homolog of the parent

 Offspring: Heterozygotes markers than remain unphased in 

offspring can be further treated conditional on the known parental 

phase (determined in Step 1 and 2) , according to Step 4 in Druet et 

al. (2008)

Druet  & Georges (2010). A Hidden Markov Model combining linkage and linkage disequilibrium information for 

haplotype reconstruction and quantitative trait locus fine mapping



Phasing of heterozygous 

SNPs (cont.)

 Step 3: Linkage disequilibruim

 To complete haplotype reconstruction, LD is exploit using algorithms 

developed either in fastPHASE or in Beagle with some modifications

Druet  & Georges (2010). A Hidden Markov Model combining linkage and linkage disequilibrium information for 

haplotype reconstruction and quantitative trait locus fine mapping



Step 3: LD information

 The fastPHASE probability model (FPM):

 The observed haplotypes are modeled as mosaics of K hidden states 

(HS), with K (number of clusters) held constant throughout the genome. 

 The Beagle probability model:

 It uses a localized haplotype clustering model (LHCM), which can be 

interpreted as a special class of HMM. 

 The number of K of HS is allowed to vary across the genome and it is 

determined by the number of edges (at the corresponding marker 

position) of a DAG summarizing all haplotypes encountered in the 

population

Druet  & Georges (2010). A Hidden Markov Model combining linkage and linkage disequilibrium information for 

haplotype reconstruction and quantitative trait locus fine mapping



Both HMM are applied in two stages:

1) The models are trained on a haploid training set consisting of the 

partially phased base haplotypes obtained after Steps 1 and 2. 

fastPHASE: generates EM parameter estimators

Beagle: generates an optimal DAG

2) The actual haplotype reconstruction and clustering is completed by 

running a diploid HMM on the complete data 

Druet  & Georges (2010). A Hidden Markov Model combining linkage and linkage disequilibrium information for 

haplotype reconstruction and quantitative trait locus fine mapping



 Knowledge of HS status in base and descendent individuals allows:

 Phasing of the markers that remained unresolved after Steps 1 and 2, 

and

 imputation of genotypes at missing marker positions

 The corresponding data augmentation is achieved by sampling 

unresolved phases and missing genotypes according to their 

respective probabilities computed form the allele-specific emission 

probabilities of the constituent HS

Druet  & Georges (2010). A Hidden Markov Model combining linkage and linkage disequilibrium information for 

haplotype reconstruction and quantitative trait locus fine mapping



For the QTL mapping, to test the presence of a QTL at a given 

map position, the following mixed model was used

b =  vector of fixed effects

h = is the vector of random QTL effects corresponding to the K defined HS

u = is vector of random individual polygenic effects and e is vector of individual error 

terms. 

The co-variance between individuals polygenic effects correspond to twice the coefficient 

of coancestry times the additive genetic variance σ2
A.

The co-variance between different HS effects was assumed to be zero, hence modeling 

QTL with a finite number of alleles. 

VC were estimated with a REML analysis

The presence of a QTL at a given map position was tested by a LRT

Y = Xb + Zh h + Zu u + e 

Druet  & Georges (2010). A Hidden Markov Model combining linkage and linkage disequilibrium information for 

haplotype reconstruction and quantitative trait locus fine mapping



Y = Xb + Zh h + Zu u + e 

Druet et al (2008):    Zh h  = cluster 

Druet & Georges (2010):  Zh h  =   hidden states

Druet  & Georges (2010). A Hidden Markov Model combining linkage and linkage disequilibrium information for 

haplotype reconstruction and quantitative trait locus fine mapping



Software

 PHASEBOOK

 LinkPHASE: runs Steps 1 (Mendelian) and 2 (Linkage)

 HiddenPHASE: runs Step 3 (LD) with FPM

 DualPHASE: runs Step 1, 2 and 3 with FPM

 DAGPHASE: runs Step 3 with LHCM

Druet  & Georges (2010). A Hidden Markov Model combining linkage and linkage disequilibrium information for 

haplotype reconstruction and quantitative trait locus fine mapping



Summary

 Meuwissen and Goddard (2001):
 It has been widely used in livestock population studies

 Drawback : with increasing number of markers and genotyped animals 

the computation of IBD probabilities becomes limiting

 This method only provides IBD probabilities

 No software is provided for this method

 Druet et al. (2008):
 The method use the IBD probabilities to cluster haplotypes and then use 

the clusters to fit them in a mixed model to map QTLs

 The clustering was done by a SAS proc Procedure

 Combining LA and LD information provided a better location of the QTL 

than the analysis based on LA only



Summary (cont.)

Druet and Georges (2010):

 The simultaneously extraction of LD and familial information improved 

the accuracy of phase reconstruction and  provided accurate genotype 

imputation

 Comparison this  novel approach with the standard LDLA - QTL mapping 

approach (Druet et al., 2008):

 The mapping results obtained from the FPM and LHCM were comparable to 

those obtained with the standard approach based on the pairwise IBD 

probabilities

 Significant differences in computing time: 

 to phase and cluster haplotypes:

 LHCM model (DAGPHASE) : 47 minutes

 FPM model (DualPHASE) : 966 minutes

 To compute IBD probabilities using already phased genotypes : 9133 minutes!



Conclusions
 Beagle has two advantages:

It models patterns of LD with a flexible number of clusters 

not many parameters need to be estimated, which makes computation 

faster

 Beagle, fastPHASE, IMPUTE:  imputed accurately missing genotypes and 

haplotype phase reconstruction for large human data sets, containing 

thousand of individuals and markers

In the context of dairy cattle populations these methods may work properly 

given the size of the data available for this population

In pig populations, e.g. data from DELISUS project (i.e. small half-sib 

families with 10, 30 and 50 sires)

These methods will inference missing genotype and haplotype phases 

accurately?

For small populations should we look for other methods (e.g. PHASE) ?



Conclusions (cont.)

 Methods that used reference panels to impute missing 
genotypes for association analysis (BIM-BAM and IMPUTE) 

 There is a gain of information that can improve imputing accuracy

 Including imputed genotypes increase the power of test 
associations 

What about the availability of reference information in livestock 
populations?



Conclusions (cont.)

 HapMiner seems to be a “simple” method to cluster 

haplotypes for association analysis

 Disadvantages:

 Phase haplotypes need to be provided

 Haplotype length (not too large)

 Thus, patterns of LD might not be properly modeled as in the 

other methods?



Conclusions (cont.)

 Druet and Georges’s approach is very interesting

 They managed to combine both population and familial 

information, using method developed in human genetics to 

exploit the population information (LD)

 The method accurately imputed missing genotypes and 

inferred phase haplotypes in a large data base

 Software is available from the authors

These methods will work properly in small populations? 



Merci !





What is a HMM?

Probabilistic parameters of a hidden Markov 

model (example)

x — states

y — possible observations

a — state transition probabilities

b — output probabilities

A hidden Markov model (HMM) is a statistical Markov model 

in which the system being modeled is assumed to be a 

Markov process with unobserved state

An HMM can be considered as the simplest dynamic 

Bayesian network

-In a regular Markov model, the state is directly visible to the 

observer, and therefore the state transition probabilities are 

the only parameters. 

-In a hidden Markov model, the state is not directly visible, 

but output, dependent on the state, is visible. 

Each state has a probability distribution over the possible 

output tokens. Therefore the sequence of tokens generated 

by an HMM gives some information about the sequence of 

states. Note that the adjective 'hidden' refers to the state 

sequence through which the model passes, not to the 

parameters of the model; even if the model parameters are 

known exactly, the model is still 'hidden'

From http://en.wikipedia.org/wiki/Hidden_Markov_model



Directed acyclic graph (DAG)

 It is supposed a sample of haplotypes for M markers and the haplotypes have 
no missing alleles. A localized haplotype-cluster model is a DAG:

 Root node (initial): represents all the haplotypes before any markers are 
processed. It has not incoming edges. Terminal node: represents all the 
haplotypes after all markers are processed. It has not outgoing edges.

 Levels of the graph: M +1. Each node A has a level m. All incoming edges to A
have the parent note at level m-1, and all outgoing edges for A have the child 
node at level m+1. The root node has level 0 and the terminal node level M.

 For each m=1,2,..,M, each edge with the child node at level m is labeled with an 
allele for the mth marker.

 For each haplotype in the sample, there is a path from the root node to the 
terminal node, such the mth allele of the haplotype is the label of the mth edge 
of the path. Each edge of the graph has at least one haplotype in the sample 
whose path traverses the edge.

Browning &  Browning (2007). Rapid and accurate haplotype phasing and missing-data inference for whole-

genome association studies by use of localized haplotype clustering.



Similarity Score (cont.)

e.g.:  Similarities between haplotypes (h1 and h2) and (h3 and h4):

h1 =  (11212)   h2 = (12222)  

h3 =  (11221)   h4 = (21222)

 Genotyping error or a point mutation from the ancestor haplotype at the 2nd 

position of h1

 the similarity of h1 and h2 will be underestimated

Li  et al. (2006). Haplotype-based quantitative trait mapping using a clustering algorithm



Missing-genotype imputation
 For any genotype gim that is unobserved (“missing”), it is 

straightforward to compute the probability gim = x (x= 0, 1, 2), given  

all observed genotypes g and parameter values v by the use of:

The first term is the sum given in the previous equation and the second term is 

the conditional distribution of the hidden variables in the HMM

This method imputes genotypes marginally and provides “best guess” for each 

genotype

It sample from the joint distribution of the missing genotypes given observed-

data, e.g., by sampling from the conditional distribution of the haplotypes for all 

individuals
Scheet  & Stephens (2006). A fast and flexible statistical model for large-scale population genotype data: applications to 

inferring missing genotypes and haplotypic phase.



Haplotype inference

Two aspects are considered:

 Sampling the pairs of haplotypes of all individuals from their 
joint distribution given the unphased genotype data 

provides a useful way to asses or account for uncertainty in 
haplotype estimates

 Construction of point estimates of the haplotypes carried by 
each individual

Scheet  & Stephens (2006). A fast and flexible statistical model for large-scale population genotype data: applications to 

inferring missing genotypes and haplotypic phase.


