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1.  Linkage disequilibrium in livestock populations  
 

1.1 A brief history of QTL mapping 
The vast majority of economically important traits in livestock and aquaculture 

production systems are quantitative, that is they show continuous distributions.  In 

attempting to explain the genetic variation observed in such traits, two models have 

been proposed, the infinitesimal model and the finite loci model.  The infinitesimal 

model assumes that traits are determined by an infinite number of unlinked and 

additive loci, each with an infinitesimally small effect (Fischer 1918).  This model has 

been exceptionally valuable for animal breeding, and forms the basis for breeding 

value estimation theory (eg Henderson 1984).   

 

However, the existence of a finite amount of genetically inherited material (the 

genome) and the revelation that there are perhaps a total of only around 20 000 genes 

or loci in the genome (Ewing and Green 2000), means that there is must be some 

finite number of loci underlying the variation in quantitative traits.  In fact there is 

increasing evidence that the distribution of the effect of these loci on quantitative 

traits is such that there are a few genes with large effect, and a many of small effect 

(Shrimpton and Robertson 1998, Hayes and Goddard 2001).  In Figure 1.1, the size of 

quantitative trait loci (QTL) reported in QTL mapping experiments in both pigs and 

dairy cattle is shown.  These histograms are not the true distribution of QTL effects 

however, they are only able to observe effects above a certain size determined by the 

amount of environmental noise, and the effects are estimated with error.  In Figure 

1.1. B, the distribution of effects adjusted for both these factors is displayed.  The 

distributions in Figure 1.1 B indicate there are many genes of small effect, and few of 

large effect.  The search for these loci, particularly those of moderate to large effect, 

and the use of this information to increase the accuracy of selecting genetically 

superior animals, has been the motivation for intensive research efforts in the last two 

decades.  Note that in this course any locus with an effect on the quantitative trait is a 

called a QTL, not just the loci of large effect.  
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Figure 1.1  A.  Distribution of additive (QTL) effects from pig experiments, 

scaled by the standard deviation of the relevant trait, and distribution of gene 

substitution (QTL) effects from dairy experiments scaled by the standard 

deviation of the relevant trait.  B. Gamma Distribution of QTL effect from pig 

and dairy experiments, fitted with maximum likelihood.   

 

Two approaches have been used to uncover QTL.  The candidate gene approach 

assumes that a gene involved in the physiology of the trait could harbour a mutation 

causing variation in that trait.  The gene, or parts of the gene, are sequenced in a 

number of different animals, and any variations in the DNA sequences, that are found, 

are tested for association with variation in the phenotypic trait.  This approach has had 

some successes – for example a mutation was discovered in the oestrogen receptor 

locus (ESR) which results in increased litter size in pigs (Rothschild et al. 1991).  For 

a review of mutations which have been discovered in candidate genes see Andersson 

and Georges (2004).  There are two problems with the candidate gene approach, 

however. Firstly, there are usually a large number of candidate genes affecting a trait, 

so many genes must be sequenced in several animals and many association studies 

carried out in a large sample of animals (the likelihood that the mutation may occur in 

non-coding DNA further increases the amount of sequencing required and the cost). 

Secondly, the causative mutation may lie in a gene that would not have been regarded 

a priori as an obvious candidate for this particular trait.  

 

An alternative is the QTL mapping approach, in which chromosome regions 

associated with variation in phenotypic traits are identified.  QTL mapping assumes 

the actual genes which affect a quantitative trait are not known.  Instead, this approach 
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uses neutral DNA markers and looks for associations between allele variation at the 

marker and variation in quantitative traits.  A DNA marker is an identifiable physical 

location on a chromosome whose inheritance can be monitored. Markers can be 

expressed regions of DNA (genes) or more often some segment of DNA with no 

known coding function but whose pattern of inheritance can be determined 

(Hyperdictionary, 2003). 

 

When DNA markers are available, they can be used to determine if variation at the 

molecular level (allelic variation at marker loci along the linkage map) is linked to 

variation in the quantitative trait.  If this is the case, then the marker is linked to, or on 

the same chromosome as, a quantitative trait locus or QTL which has allelic variants 

causing variation in the quantitative trait.   

 

Until recently, the number of DNA markers identified in livestock genome was 

comparatively limited, and the cost of genotyping the markers was high.  This 

constrained experiments designed to detect QTL to using a linkage mapping 

approach.  If a limited number of markers per chromosome are available, then the 

association between the markers and the QTL will persist only within families and 

only for a limited number of generations, due to recombination.  For example in one 

sire, the A allele at a particular marker may be associated with the increasing allele of 

the QTL, while in another sire, the a allele at the same marker may be associated with 

the increasing allele at the QTL, due to historical recombination between the marker 

and the QTL in the ancestors of the two sires.   

 

To illustrate the principle of QTL mapping exploiting linkage, consider an example 

where a particular sire has a large number of progeny. The parent and the progeny are 

genotyped for a particular marker. At this marker, the sire carries the marker alleles 

172 and 184, Figure 1.2. The progeny can then be sorted into two groups, those that 

receive allele 172 and those that receive allele 184 from the parent. If there is a 

significant difference between the two groups of progeny, then this is evidence that 

there is a QTL linked to that marker. 
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Figure 1.2.  Principle of quantitative trait loci (QTL) detection, illustrated using 

an abalone example.  A sire is heterozygous for a marker locus, and carries the 

alleles 172 and 184 at this locus.  The sire has a large number of progeny.  The 

progeny are separated into two groups, those that receive allele 172 and those 

that receive allele 184. The significant difference in the trait of average size 

between the two groups of progeny indicates a QTL linked to the marker.  In 

this case, the QTL allele increasing size is linked to the 172 allele and the QTL 

allele decreasing size is linked to the 184 allele (Figure courtesy of Nick 

Robinson). 

 

QTL mapping exploiting linkage has been performed in all nearly livestock species 

for a huge range of traits (for a review see Andersson and Georges 2004).  The 

problem with mapping QTL exploiting linkage is that, unless a huge number of 

progeny per family or half sib family are used, the QTL are mapped to very large 

confidence intervals on the chromosome.  To illustrate this, consider the formula that 

Darvasi and Soller (1997) gave for estimating the 95% CI for QTL location for simple 

QTL mapping designs under the assumption of a high density genetic map.  The 

formula was CI=3000/(kNδ2), where N is the number of individuals genotyped, δ  

allele substitution effect (the effect of getting an extra copy of the increasing QTL 

allele) in units of the residual standard deviation, k the number of informative parents 

per individual, which is equal 1 for half-sibs and backcross designs and 2 for F2 
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progeny, and 3000 is about the size of the cattle genome in centi-Morgans.  For 

example, given a QTL segregates on a particular chromosome within a half sib family 

of 1000 individuals, for a QTL with an allele substitution effect of 0.5 residual 

standard deviations the 95% CI would be 12 cM.  Such large confidence intervals 

have two problems.  Firstly if the aim of the QTL mapping experiment is to identify 

the mutation underlying the QTL effect, in a such a large interval there are a large 

number of genes to be investigated (80 on average with 20 000 genes and a genome of 

3000cM).  Secondly, use of the QTL in marker assisted selection is complicated by 

the fact that the linkage between the markers and QTL is not sufficiently close to 

ensure that marker-QTL allele relationships persist across the population, rather 

marker-QTL phase within each family must be established to implement marker 

assisted selection.   

 

An alternative, if dense markers were available, would be to exploit linkage 

disequilibrium (LD) to map QTL.  Performing experiments to map QTL in genome 

wide scans using LD has recently become possible due to the availability of 10s of 

thousands of single nucleotide polymorphism (SNP markers) in cattle, pigs, chickens 

and sheep in the near future (eg.  

(ftp://ftp.hgsc.bcm.tmc.edu/pub/data/Btaurus/snp/Btau20040927/bovine-snp.txt).  A 

SNP marker is a difference in nucleotide between animals (or an animals pair of 

chromosomes), at a defined position in the genome, eg. 

Animal 1.   ACTCGGGC 

Animal 2.   ACTTGGGC 

Rapid developments in SNP genotyping technology now allow genotyping of a SNP 

marker in an individual for as little as 1c US.              

 

1.2 Definitions and measures of linkage disequilibr ium. 
 

The classical definition of linkage disequilibrium (LD) refers to the non-random 

association of alleles between two loci.  Consider two markers, A and B, that are on 

the same chromosome.  A has alleles A1 and A2, and B has alleles B1 and B2.  Four 

haplotypes of markers are possible A1_B1, A1_B2, A2_B1 and A2_B2.  If the 

frequencies of alleles A1, A2, B1 and B2 in the population are all 0.5, then we would 
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expect the frequencies of each of the four haplotypes in the population to be 0.25.  

Any deviation of the haplotype frequencies from 0.25 is linkage disequilibrium (LD), 

ie the genes are not in random association.  As an aside, this definition serves to 

illustrate that the distinction between linkage and linkage disequilibrium mapping is 

somewhat artificial – in fact linkage disequilibrium between a marker and a QTL is 

required if the QTL is to be detected in either sort of analysis.  The difference is: 

 

linkage analysis only considers the linkage disequilibrium that exists within 

families, which can extend for 10s of cM, and is broken down by 

recombination after only a few generations. 

 

linkage disequilibrium mapping requires a marker to be in LD with a QTL 

across the entire population.  To be a property of the whole population, the 

association must have persisted for a considerable number of generations, so 

the marker(s) and QTL must therefore be closely linked. 

  

One measure of LD is D, calculated as (Hill 1981) 

 

D = freq(A1_B1)*freq(A2_B2)-freq(A1_B2)*freq(A2_B1) 

 

where freq (A1_B1) is the frequency of the A1_B1 haplotype in the population, and 

likewise for the other haplotypes.  The D statistic is very dependent on the frequencies 

of the individual alleles, and so is not particularly useful for comparing the extent of 

LD among multiple pairs of loci (eg. at different points along the genome).  Hill and 

Robertson (1968) proposed a statistic, r2, which was less dependent on allele 

frequencies, 

)2(*)1(*)2(*)1(

2
2

BfreqBfreqAfreqAfreq

D
r =  

 

Where freq(A1) is the frequency of the A1 allele in the population, and likewise for 

the other alleles in the population.  Values of r2 range from 0, for a pair of loci with no 

linkage disequilibrium between them, to 1 for a pair of loci in complete LD.     

 

As an example, consider a situation where the allele frequencies are 
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freq(A1) = freq(A2) = freq (B1) = freq (B2) = 0.5 

The haplotype frequencies are: 

freq(A1_B1) = 0.1 

freq(A1_B2) = 0.4 

freq(A2_B1) = 0.4 

freq(A2_B2) = 0.1 

The D = 0.1*0.1-0.4*0.4 = -0.15 

And D2 = 0.0225. 

The value of r2 is then 0.0225/(0.5*0.5*0.5*0.5) = 0.36.  This is a moderate level of 

r2.   

 

Another commonly used pair-wise measure of LD is D’ (Lewontin 1964).  To 

calculate D’, the value of D is standardized by the maximum value it can obtain: 

 

='D  |D|/Dmax 

 

Where Dmax= min[freq(A1)*freq(B2), -1*freq(A2)*freq(B1)] if D>0, else 

= min[freq(A1)*freq(B1),--1*freq(A2)*freq*B2)] if D<0.   

 

The statistic r2 is preferred over D’ as a measure of the extent of LD for two reasons.    

If we consider the r2 between a marker and an (unobserved) QTL, r2 is the proportion 

of variation caused by the alleles at a QTL which is explained by the markers.  The 

decline in r2 with distance actually indicates how many markers or phenotypes are 

required in initial genome scan exploiting LD are required to detect QTL.  

Specifically, sample size must be increased by a factor of 1/r2 to detect an 

ungenotyped QTL, compared with the sample size for testing the QTL itself 

(Pritchard and Przeworski 2001).  D’ on the other hand does a rather poor job of 

predicting required marker density for a genome scan exploiting LD, as we shall see 

in Section 2.  The second reason for using r2 rather than D’ to measure the extent of 

LD is that D’ tends to be inflated with small sample sizes or at low allele frequencies 

(McRae et al. 2002).   
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The above measures of LD are for bi-allelic markers.  While they can be extended to 

multi-allelic markers such as microsatellites, Zhao et al. (2005) recommended the 

'2χ measure of LD for multi-allelic markers, where 

∑∑
= =−

=
k

i

m

j ji

ij

BfreqAfreq

D

l 1 1

2
'2

)()()1(

1χ , 

and )()()_( jijiij BfreqAfreqBAfreqD −= , freq(Ai) is the frequency of the i th allele 

at marker A, freq(Bj) is the frequency of the j th allele at marker B, and l is the 

minimum of the number of alleles at marker A and marker B.  Note that for bi-allelic 

markers, 2'2 r=χ .    

    

Their investigations using simulation showed out of a number of multi-allelic pair-

wise measures of LD  '2χ was the best predictor of useable marker-QTL LD (eg. the 

proportion of QTL variance explained by the marker).   

  

While pair-wise measures of LD are important and widely used, are not particularly 

illuminating with respect to the causes of LD.  For example, statistics such as r2 

consider only two loci at a time, whereas we may wish to calculate the extent of LD 

across a chromosome segment that contains multiple markers.   An alternate multi-

locus definition of LD is the chromosome segment homozygosity (CSH) (Hayes et 

al. 2003).  Consider an ancestral animal many generations ago, with descendants in 

the current population.  Each generation, the ancestor’s chromosome is broken down, 

until only small regions of chromosome which trace back to the common ancestor 

remain.  These chromosome regions are identical by descent (IBD).  Figure 1.3 

demonstrates this concept.   

 

The CSH then is the probability that two chromosome segments of the same size and 

location drawn at random from the population are from a common ancestor (ie IBD), 

without intervening recombination.  CSH is defined for a specific chromosome 

segment, up to the full length of the chromosome.  The CSH cannot be directly 

observed from marker data but has to be inferred from marker haplotypes for 

segments of the chromosome. Consider a segment of chromosome with marker locus 

A at the left hand end of the segment and marker locus B at the other end of the 
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segment (as in the classical definition above).  The alleles at A and B define a 

haplotype. Two such segments are chosen at random from the population.  The 

probability that the two haplotypes are identical by state (IBS) is the haplotype 

homozygosity (HH).  The two haplotypes can be IBS in two ways,   

i. The two segments are descended from a common ancestor without intervening 

recombination, so are identical by descent (IBD), or  

ii.  the two haplotypes are identical by state but not IBD 

The probability of i. is CSH.  The probability of ii. is a function of the marker 

homozygosities, given the segment is not IBD.  The probabilities of i. and ii. are 

added together to give the haplotype homozygosity (HH):       

 

CSH

CSHHomCSHHom
CSHHH BA

−
−−

+=
1

))((
 

 

Where HomA and HomB are the individual marker homozygosities of marker A and 

marker B.  This equation can be solved for CSH when the haplotype homozygosities 

and individual marker homozygosities are observed from the data.  For more than two 

markers, the predicted haplotype homozygosity can be calculated in an analogous but 

more complex manner. 

 

1.

2. 2.

2. 2.

3.

 

Figure 1.3 An ancestor many generations ago (1) leaves descendants (2).  Each 

generation, the ancestors chromosome is broken down by recombination, until 

all that remains in the current generation are small conserved segments of the 

ancestor’s chromosome (3).  The chromosome segment homozygosity (CSH) is 

the probability that two chromosome segments of the same size and location 

drawn at random from the population are from a common ancestor.  
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Another justification for using multi-locus measures of LD is that they can be less 

variable than pair-wise measures.  The variation in LD arises from two sampling 

processes (Weir and Hill 1980). The first sampling process reflects the sampling of 

gametes to form successive generations, and is dependent on finite population size. 

The second sampling process is the sampling of individuals to be genotyped from the 

population, and is dependent on the sample size, n.  The first sampling process 

contributes to the high variability of LD measures.  Marker pairs at different points in 

the genome, but a similar distance apart, can have very different r2 values, particularly 

if the marker distance is small, Figure 1.4.  This is because by chance there may have 

been an ancestral recombination between one pair of markers, but not the other. 
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Figure 1.4.  r2 values against distance in bases between pairs of markers from 0 

000 genome wide SNPs genotyped in a population of Holstein Friesian cattle.  

1000000 bases is approximately 1cM.   

 

Multi-locus measures of LD can have reduced variability because they accumulate 

information across multiple loci in an interval, thus averaging some of the effects of 

chance recombinations.  Hayes et al. (2003) investigated the variability of r2 and CSH 

using simulation.  They simulated a chromosome segment of 10 cM containing 11 

markers was simulated with a mutation-drift model, with a constant N of 1000.  They 
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found CSH was less variable than r2 provided at least four loci were included in the 

calculation of CSH, Figure 1.5.   

  

 

Figure 1.5 Coefficient of variation of r2 and CSH in a simulated populations, over 

haplotype regions of the same length, across 200 replicates.  There one marker 

per 0.01M (Hayes et al. 2003).   

 

1.3 Causes of linkage disequilibrium in livestock p opulations 
 
LD can arise due to migration, mutation, selection, small finite population size or 

other genetic events which the population experiences (eg. Lander and Schork 1994).  

LD can also be deliberately created in livestock populations;  in an F2 QTL mapping 

experiment LD is created between marker and QTL alleles by crossing two inbred 

lines. 

 

In livestock populations, finite population size is generally implicated as the key 

cause of LD.  This is because  

- effective population sizes for most livestock populations are relatively small, 

generating relatively large amounts of LD 

- LD due to crossbreeding (migration) is large when crossing inbred lines but 

small when crossing breeds that do not differ as markedly in gene frequencies, 
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and it disappears after only a limited number of generations (eg. Goddard 

1991) 

- mutations are likely to have occurred many generations ago.   

- while selection is probably a very important cause of LD, it’s effect is likely to 

be localised around specific genes, and so has relatively little effect on the 

amount of LD ‘averaged’ over the genome.  The use of LD measures to detect 

selected areas of the genome will be discussed briefly in section 1.8.  

1.3.1  Predicting the extent of LD with finite population size 
If we accept finite population size as the key driver of LD in livestock populations, it 

is possible to derive a simple expectation for the amount of LD for a given size of 

chromosome segment.  This expectation is (Sved 1971) 

)14/(1)( 2 += NcrE  

where N is the finite population size, and c is the length of the chromosome segment 

in Morgans.  The CSH has the same expectation (Hayes et al. 2003).  This equation 

predicts rapid decline in LD as genetic distance increases, and this decrease will be 

larger with large effective population sizes, Figure 1.6.  
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Figure 1.6. The extent of LD (as measured by chromosome segment 

homozygosity, CSH) for increasing chromosome segment length, for Ne=100 and 

Ne=1000.  Note that r2 has the same expectation as CSH. 

 

As the extent of LD that is observed depends both on recent and historical 

recombinations, not only the current effective population size, but also the past 

effective population size are important.  Effective population size for livestock species 

may have been much larger in the past than they are today.  For example in dairy 
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cattle the widespread use of artificial insemination and a few elite sires has greatly 

reduced effective population size in the recent past.  In humans, the story is the 

opposite; improved agricultural productivity and industrialisation have led to dramatic 

increases in population size.  How does changing population size affect the extent of 

LD?  To investigate this, we simulated a population which either expanded or 

contracted after a 6000 generation period of stability.  The LD, as measured by CSH, 

was measured for different lengths of chromosome segment, Figure 1.7.  Results for r2 

would look very similar. 

A 
B 

Figure 1.7. Chromosomal homozygosity for different lengths of chromosome 

(given the recombination rate) for populations: A.  Linearly increasing 

population size, from N=1000 to N=5000 over 100 generations, following 6000 

generations at N=1000.  B.  Linearly decreasing population size, from N=1000 to 

N=100 over 100 generations, following 6000 generations at N=1000.   

 

The conclusion is that LD at short distances is a function of effective population size 

many generations ago, while LD at long distances reflects more recent population 

history.  In fact, provided simplifying assumptions such as linear change in population 

size are made, it can be shown that the r2 or CSH reflects the effective population size 

1/(2c) generations ago, where c is the length of the chromosome segment in Morgans. 

So the expectation for r2 with changing effective population size can be written as 

)14/(1)( 2 += cNrE t where ct 2/1= .    
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1.4 The extent of LD in livestock and human populat ions 
 
If LD is a predominantly result of finite population size, then the extent of LD should 

be less in humans than in cattle, as in humans the effective population size is ~ 10000 

(Kruglyak 1999) whereas in livestock where effective population sizes can be as low 

as 100 (Riquet et al. 1999).  The picture is somewhat complicated by the fact that 

livestock populations have been very much larger, while the Caucasian effective 

population size has been very much smaller (following the out of Africa hypothesis).  

So what we could expect to see is that at long distances between markers, the r2 

values in livestock are much larger than in humans, while at short distances, the level 

of LD is more similar.  This is in fact what is observed.  Moderate LD (eg. 2.02 ≥r in 

humans typically extends less than 5kb (~0.005cM), depending on the population 

studied (Dunning et al. 2000, Reich et al. 2001, Tenesa et al. 2007), Figure 1.8.  In 

cattle moderate LD extends up to 100kb, Figure 1.8.  However, very high levels of 

LD (eg. 8.02 ≥r only extend very short distances in both humans and cattle.   

 

It is interesting to compare the extent of LD in the different cattle populations.  The 

Dutch and Australian Holstein populations had a very similar decline of LD, probably 

because these populations are highly related (eg. Zenger et al. 2007) and are similar in 

effective population size and history.  The decline of LD in the Norwegian Reds was 

more rapid than in the Holstein populations.  One explanation for this could be that 

the effective population size in Norwegian Red is higher than in Holstein, even 

though the global population is much smaller.  Effective population size in Norwegian 

Reds is approximately 400 (Meuwissen et al. 2002), while for the global Holstein 

population effective population size is close to 150 (Zenger et al 2007), and a more 

limited extent of LD is expected with larger effective population size.   
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Figure 1.8.  A.  Average r2 with distance in Caucasian humans (from Tenesa et 

al. 2007).  1cM is approximately 1000kb.  B.  Average r2 value according to the 

distance between SNP markers in different cattle populations.  Results are from 

9918 SNPs distributed across the genome genotyped in 384 Holstein cattle or 384 

Angus cattle, 403 SNPs genotyped in 783 Norwegian Red cattle, 3072 SNPs 

genotyped in 2430 Dutch Holstein cattle, or 351 SNPs genotyped in Jersey cattle.  

Norwegian red data kindly supplied by Prof. Sigbjorn Lien, Norwegian 

University of Life Sciences, New Zealand Jersey data kindly supplied by Dr. 

Richard Spelman, Livestock Improvement Co-operative.     
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Figure 1.8 implies that for the Holstein populations at least, there must be a marker 

approximately every 100kb (kilo bases) or less to achieve an average r2 of 0.2.  This 

level of LD between markers and QTL would allow a genome wide association study 

of reasonable size to detect QTL of moderate effect.  As the bovine genome is 

approximately 3,000,000kb, this implies that in order of 30,000 evenly spaced 

markers are necessary in order that every QTL in the genome can be captured in a 

genome scan using LD to detect QTL.  In Jerseys and Norwegian Reds, a larger 

number of markers would be required.   

 

Du et al. (2007) assessed the extent of LD in pigs using 4500 SNP markers genotyped 

in six lines of commercial pigs.  Only maternal haplotypes of the commercial pigs 

were used to evaluate r2 between the SNPs, as the paternal haplotypes were over-

represented in the population.  The results from their study indicate there may be 

considerably more LD in pigs than in cattle.  For SNPs separate by 1cM, the average 

value of r2 was approximately of 0.2.  LD of this magnitude only extends 100kb in 

cattle.  In pigs at a 100kb the average r2 was 0.371. 

 

Heifetz et al. (2005) evaluated the extent of LD in a number of populations of 

breeding chickens.  They used microsatellite markers and evaluated the extent of LD 

with the '2χ statistic.  In their populations, they found significant LD extended long 

distances.  For example 57% of marker pairs separated by 5-10cM had an 2.0'2 ≥χ in 

one line of chickens and 28% in the other.  Heifetz et al. (2005) pointed out that the 

lines they investigated had relatively small effective population sizes and were partly 

inbred, so the extent of LD in other chicken populations with larger effective 

population sizes may be substantially different. 

 

McRae et al. (2002) evaluated the extent of LD in domestic sheep.  They used the D’ 

parameter rather than r2, so comparison with results for other species given here is 

difficult.  They found that high levels of LD extended for tens of centimorgans and 

declined with increasing marker distance.  They also thoroughly investigated bias in 

D’ under different conditions, and found that D' may be skewed when rare alleles are 
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present.  They therefore recommended that the statistical significance of LD is used in 

conjunction with coefficients such as D' to determine the true extent of LD. 

 

1.5  Extent of LD between populations and breeds. 
Marker assisted selection exploiting LD relies on the phase of LD between markers 

and QTL being the same in the selection candidates as in the reference population 

where the QTL marker associations were detected.  However as the reference 

population and the population in which MAS is applied become more and more 

diverged, for example different breeds, the phase is less and less likely to be 

conserved.  The statistic r is a measure for LD between two markers in a population, 

but can also be used to measure the persistence of the LD phases between 

populations.  While the r2 statistic between two SNP markers at the same distance in 

different breeds or populations can be the same value even if the phases of the 

haplotypes are reversed, they will only have the same value and sign for the r statistic 

if the phase is the same in both breeds or populations.  For marker pairs of a given 

distance, the correlation between r in two populations, corr(r1,r2), is equal to the 

correlation of the effects of the marker between both populations, for markers that 

have that same distance to a QTL (De Roos et al. 2007).  If this correlation is 1, the 

marker effects are equal in both populations.  If this correlation is zero, a marker in 

population 1 is useless in population 2. A high correlation between r values means 

that the marker effect persists across the populations.  Calculating the correlation of r 

values across different breeds and populations as an indicator of how far the same 

marker phase is likely to persist between these breeds and populations (Goddard et al. 

2006).  This information can in turn be used to give an indication of marker density 

required to ensure marker-QTL phase persists across populations and or breeds, which 

would be necessary for the application LD-MAS or Genomic selection using the same 

marker set and SNP effects across the breeds or populations.   

 

In Figure 1.9, the correlation of r values is given for a number of different cattle 

populations.  The correlation of r values for Dutch Red-and-white bulls and Dutch 

Black-and-white bulls was 0.9 at 30kb.  This indicates at this distance r2 is high in 

both populations and the sign of r is the same in both populations, so the LD phase is 

the same in both populations. If one of these SNPs was actually an unknown mutation 
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affecting a quantitative trait, the other SNP could be used in MAS and the favourable 

SNP allele would be the same in both breeds.  For Holstein and Angus breeds, the 

correlation of r is above 0.9 only at 10kb or less.  For Australian Holsteins and Dutch 

Holsteins, the correlation of r values was above 0.9 up to 100kb, reflecting the fact 

that there are common bulls used in the two populations (eg. Zenger et al. 2007).   
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Figure 1.9.  Correlation between r values for various cattle populations or sub-

populations, as a function of marker distance (from De Roos et al. 2007).  

  

 

1.6 Optional topic 1.  Brief note on haplotyping st rategies 
Calculations of LD parameters like r2 and CSH assume that the genotypes of 

individuals can be phased into haplotypes (ie. which marker alleles belong on the 

paternally inherited chromosome and which marker alleles belong on the maternally 

inherited chromosome).  If large half sib families are available, the sires haplotypes 

can fairly readily be reconstructed by determining which alleles are most often co-

inherited from the sire.  The haplotypes which the dam passed on the to the progeny 

can then be inferred by ‘subtracting’ the alleles transmitted from the sire from the 

progeny genotypes.  Inferring haplotypes becomes more difficult in complex 
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pedigrees, with missing marker information, or when there is very little pedigree 

information at all. 

 

One method of inferring haplotypes in complex pedigrees is to run a Markov Chain 

on a set of genetic descent graphs.  A genetic descent graph specifies the paths of 

gene flow (parents to offspring), but not the particular founder alleles travelling down 

the paths.  See Sobel and Lange (1996) for more details on this procedure.  This 

method is implemented in a freeware program called SimWalk 

(http://www.genetics.ucla.edu/software/simwalk_doc/). 

 

In some cases, the individuals that are genotyped may be randomly sampled from the 

population, with no pedigree information available.  Provided the markers which have 

been genotyped are closely spaced, it can be possible to estimate haplotypes based on 

linkage disequilibrium and allele frequency information alone.  One such method was 

proposed by Stephens et al. (2001).  Suppose we have a sample of n diploid 

individuals from a population (these individuals are assumed to be unrelated).  Let G 

= (G1,….Gn) denote the (known) genotyped for the individuals, let H = (H1,…,Hn) 

denote the (unknown) corresponding haplotype pairs, let F = (F1,….,FM) denote the 

set of unknown population haplotype frequencies, and let f = (f1,….,fM) denote the set 

of unknown sample haplotype frequencies (the M possible haplotypes are labelled 

1,…,M).  The haplotype reconstruction method of Stephens et al. (2001) regards the 

unknown haplotypes as unobserved random quantities and aims to evaluate their 

conditional distribution in light of the genotype data.  To do this, they used MCMC, to 

obtain an approximate sample from the posterior distribution of H given G, eg. 

Pr(H|G).  The steps in the algorithm are: 

 

1.   Start with an initial guess for H (the haplotype pairs of all individuals), H0.  

This begins by listing all haplotypes that must be present unambiguously in the 

sample, that is those individuals who are homozygous at every locus or are 

heterozygous at only one locus.  For the other individuals, who have ambiguous 

haplotypes, the haplotypes can be allocated at random from the genotypes.  

2.   Choose an individual, i, at random from all the ambiguous genotypes.  Sample 

the haplotypes for this individual for the next iteration ( 1+t
iH ).  These haplotypes are 
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sampled from a distribution which assumes that the haplotypes in the haplotype pair 

Hi are likely to look either exactly the same or similar to a haplotype that has already 

been observed.  This assumption is based on the existence of both LD and mutation – 

if the chromosome segment carrying the haplotypes is short enough, there will be 

considerable LD, greatly restricting the number of haplotypes.  New haplotypes can 

be generated either by recombination or mutation at one of the markers.  Formally, the 

distribution from which the new haplotypes are sampled is: 
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where αr is the number of haplotypes of type α in the set H, r is the total number of 

haplotypes in H, θ is a scaled mutation rate (based on assumptions about population 

size, mutation rates at individual loci and length of the haplotype, relating to the 

expectation of LD described above), and P is mutation matrix (mapping the mutations 

onto markers in the haplotype).  This corresponds to the next sampled haplotype, h, 

being obtained by applying a random number of mutations, s, to a randomly chosen 

existing haplotype, α, where s is sampled from a geometric distribution.  

 

The above algorithm is implemented in a program (again free) called PHASE.  At 

least for short haplotypes (< 1cM) it appears to construct haplotypes very accurately.  

A nice feature of the algorithm is that an approximate probability of each haplotype 

for each animal being correct can be obtained from the posterior distribution.  These 

probabilities could potentially be used in the QTL mapping procedure.  The PHASE 

program is now widely used in human genetics, and is likely to be used to construct 

the bovine haplotype map as part of the bovine genome sequencing activity.        
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2. Genome wide association studies 
 

2.1 Introduction 
Linkage disequilibrium (LD) mapping of QTL exploits population level associations 

between markers and QTL.  These associations arise because there are small segments 

of chromosome in the current population which are descended from the same 

common ancestor.  These chromosome segments, which trace back to the same 

common ancestor without intervening recombination, will carry identical marker 

alleles or marker haplotypes, and if there is a QTL somewhere within the 

chromosome segment, they will also carry identical QTL alleles.  There are a number 

of QTL mapping strategies which exploit LD, the simplest of these is the genome 

wide association test using single marker regression.   

 

2.2 Genome wide association tests using single mark er 
regression 
In a random mating population with no population structure the association between a 

marker and a trait can be tested with single marker regression as   

eXµ1y n ++= g  

Where y is a vector of phenotypes, 1n is a vector of 1s, X is a design matrix allocating 

records to the marker effect, g is the effect of the marker and e is a vector of random 

deviates 2,0(~ eij Ne σ ), where 2
eσ is the error variance.  In this model the effect of the 

marker is treated as a fixed effect.  Note that the g can actually be a vector of 2 times 

the number of marker alleles, if both additive and dominance effects are to be 

estimated.  The underlying assumption here is that the marker will only affect the trait 

if it is in linkage disequilibrium with an unobserved QTL.  This model ignores fixed 

effects other than the mean, however they can be easily included. 

 

The null hypothesis is that the marker has no effect on the trait, while the alternative 

hypothesis is that the marker does affect the trait (because it is in LD with a QTL).  

The null hypothesis is rejected if 2,1, vvFF α> , where F is the F statistic calculated 
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from the data for example by an analysis of variance (ANOVA), 2,1, vvFα is the value 

from an F distribution at α level of significance and v1, v2 degrees of freedom. 

 

Consider a small example of 10 animals genotyped for a single SNP.  The phenotypic 

and genotypic data is: 

 

Animal Phenotpe SNP allele 1 SNP allele 2 

1 2.030502 1 1 

2 3.542274 1 2 

3 3.834241 1 2 

4 4.871137 2 2 

5 3.407128 1 2 

6 2.335734 1 1 

7 2.646192 1 1 

8 3.762855 1 2 

9 3.689349 1 2 

10 3.685757 1 2 

 

We need a design matrix X to allocate both the mean and SNP alleles to phenotypes.  

In this case we will use an X matrix with number of rows is equal to the number of 

records, and one column for the SNP effect.  We will set the effect of the “1” allele to 

zero, so the SNP effect column in the X matrix is the number of copies of the “2” 

allele an animal carries (X matrix in bold): 

 

Animal 1n 

X, Number of “2” 

alleles  

1 1 0 

2 1 1 

3 1 1 

4 1 2 

5 1 1 

6 1 0 

7 1 0 

8 1 1 

9 1 1 

10 1 1 
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The mean and SNP effect can then be estimated as: 
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Where y is the (number of animals x 1) vector of phenotypes.   

In the above example the estimated of the mean and SNP effect are 
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This is not far from the real value of these parameters.  The data above was 

“simulated” with a mean of 2, a QTL  effect of 1, an r2 (a standard measure of LD) 

between the QTL and the SNP of 1, plus a normally distributed error term.   

 

The F-value can be calculated as:  
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Using the above values, the value of F is 4.56.  This can be compared to the tabulated 

F-value at a 5% significance value and 1 and 9 (number of records -1) degrees of 

freedom is 5.12.  So the SNP effect in this case is not significant (not surprisingly 

with only 10 records!).   

 

The power of the association test to detect a QTL by testing the marker effect depends 

on: 

1. The r2 between the marker and QTL.  Specifically, sample size must be 

increased by a factor of 1/r2 to detect an ungenotyped QTL, compared with the 

sample size for testing the QTL itself (Pritchard and Przeworski 2001).   

2. The proportion of total phenotypic variance explained by the QTL, termed 2Qh . 

3. The number of phenotypic records n 

4. The allele frequency of the rare allele of the SNP or marker, p, which 

determines the minimum number of records used to estimate an allele effect.  

The power becomes particular sensitive to p when p is small (eg. <0.1). 

5. The significance level α set by the experimenter. 
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The power is the probability that the experiment will correctly reject the null 

hypothesis when a QTL of a given size of effect really does exist in the population. 

Figure 2.1 illustrates the power of an association test to detect a QTL with different 

levels of r2 between the QTL and the marker and with different numbers of 

phenotypic records (using the formula’s of Luo 1998).   

 

Using both this figure, and the extent of LD in our livestock species, we can make 

predictions of the number of markers required to detect QTL in a genome wide 

association study.  For example, an r2 of at least 0.2 is required to achieve power ≥ 0.8 

to detect a QTL of 05.02 =Qh with 1000 phenotypic records.  In dairy cattle, r2 ≈ 0.2 at 

100kb.  So assuming a genome length of 3000Mb in cattle, we would need at least 15 

000 markers in such an experiment to ensure there is a marker 100kb from every 

QTL.  However this assumes that the markers are evenly spaced, and all have a rare 

allele frequency above 0.2.  In practise, the markers may not be evenly spaced and the 

rare allele frequency of a reasonable proportion of the markers will be below 0.2.  

Taking these two factors into account, at least 30 000 markers would be required.  

 

To demonstrate the dependence of power on r2 between a QTL and SNP in another 

way, consider the results of Macleod et al. (2007).  They attempted to assess the 

power of whole genome association scans in outbred livestock with commercially 

available SNP panels.  In their study, 365 cattle were genotyped using a 10,000 SNP 

panel while QTL, polygenic and environmental effects were simulated for each 

animal, with QTL simulated on genotyped SNPs chosen at random.  The power to 

detect a QTL accounting for 5% of the phenotypic variance with 365 animals 

genotyped, was 37% (p<0.001).  There was a strong correlation between the F-value 

of significant SNPs and their r2 with the “QTL”, Figure 2.2.  The correlation of F-

values with D’ was almost zero.     
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Figure 2.1 A.  Power to detect a QTL explaining 5% of the phenotypic variance 

with a marker.  B.  Power to detect a QTL explaining 2.5% of the phenotypic 

variance with a marker, for different numbers of phenotypic records given in the 

legend and for different levels of r2 between the marker and the QTL, with a P 

value of 0.05.  Rare allele frequencies at the QTL and marker were both 0.2.    
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Figure 2.2  Plots of F-values of SNPs tested for association, against r2 and D’ of 

the tested SNP with the QTL.  The QTL accounted for 5% of the phenotypic 

variance.  From Macleod et al. 2007. 

2.2.1 Choice of significance level  
With such a large number of markers tested in genome wide association studies, an 

important question is what value of α to choose.  In a genome wide association study, 

we will be testing 10s or possibly 100s of thousands of markers.  A major issue in 

setting significance thresholds is the multiple testing problem.  In most QTL mapping 

experiments, many positions along the genome or a chromosome are analysed for the 

presence of a QTL.  As a result, when these multiple tests are performed the 

"nominal" significance levels of single test don't correspond to the actual significance 

levels in the whole experiment, eg. when considered across a chromosome or across 

the whole genome.  For example, if we set a point-wise significance threshold of 5%, 

we expect 5% of results to be false positives.  If we analyse 10 000 markers 

(assuming for the moment these points are independent), we would expect 

10000*0.05 = 500 false positive results!  Obviously more stringent thresholds need to 

be set.  One option would be to adjust the significance level for the number of 

markers tested using a Bonferoni correction to obtain an experiment wise P-value of 

0.05.  However such a correction does not take account of the fact that ‘tests’ on the 

same chromosome may not be independent, as the markers can be in linkage 

disequilibrium with each other as well as the QTL.  As a result, the Bonferoni 
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correction tends to be very conservative, and requires some decision to be made about 

how many independent regions of the genome were tested. 

 

Churchill and Doerge (1994) proposed the technique of permutation testing to 

overcome the problem of multiple testing in QTL mapping experiments. Permutation 

testing is a method to set appropriate significance thresholds with multiple testing (eg 

testing many locations along the genome for the presence of the QTL).  Permutation 

testing is performed by analysing a large number of simulated data sets that have been 

generated from the real one, by randomly shuffling the phenotypes across individuals 

in the mapping population. This removes any existing relationship between genotype 

and phenotype, and generates a series of data sets corresponding to the null 

hypothesis. Genome scans can then be performed on these simulated data-sets. For 

each simulated data the highest value for the test statistic is identified and stored.  The 

values obtained over a large number of such simulated data sets are ranked yielding 

an empirical distribution of the test statistic under the null hypothesis of no QTL.  The 

position of the test statistic obtained with the real data in this empirical distribution 

immediately measure the significance of the real dataset.  .  For example if we carry 

out 100 000 analyses of permuted data, the F value for the 5000th highest value will 

represent the cut off point for the 5% level of significance.  Significance thresholds 

can then be set corresponding to 5% false positives for the entire experiment, 5% false 

positives for a single chromosome, and so on.  Permutation testing is an excellent 

method of setting significance thresholds in a random mating population.  In 

populations with some pedigree structure however, randomly shuffling phenotypes 

across marker genotypes will not preserve any pedigree structure that exists in the 

data.   

 

An alternative to attempting to avoid false positives is to monitor the number of false 

positives relative to the number of positive results (Fernando et al. 2004).  The 

researcher can then set a significance level with an acceptable proportion of false 

positives.  The false discovery rate (FDR) is the expected proportion of detected QTL 

that are in fact false positives (Benjamini and Hochberg 1995, Weller 1998).  FDR 

can be calculated for a QTL mapping experiment as 

mPmax/n, 



 30 

where Pmax is the largest P value of QTL which exceed the significance threshold, n is 

the number of QTL which exceed the significance threshold and m is the number of 

markers tested.  Figure 2.3 shows an example of the false discovery rate in an 

experiment where 9918 SNPs were tested for the effect on feed conversion efficiency 

in 384 Angus cattle.  As the significance threshold is relaxed, the number of 

significant SNPs increases.  However, the FDR also increases.         
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Figure 2.3 A.  Number of significant markers at different P values in a genome 

wide association study with 9918 SNPs, using 384 Angus cattle with phenotypes 

for feed conversion efficiency.  B.  False discovery rate at the different P-values.     
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In this experiment, a P-value of 0.001 was chosen as a criteria to select SNPs for 

further investigation.  At this P-value, there were 56 significant SNPs.  So the false 

discovery rate was 9918*0.001/56 = 0.18.  This level of false discovery was deemed 

acceptable by the researchers.     

 

A number of other statistics have been proposed to control the proportion of false 

positives, including the proportion of false positives (PRP Fernando et al. 2004), and 

the positive false discovery rate (pFDR Storey 2002).   

 

2.2.2 Confidence intervals. 
There are few reports in the literature on methods to estimate confidence intervals in 

genome wide association studies.  A method based on cross-validation is described 

here.  To calculate approximate 95% confidence intervals for the location of QTL 

underlying the significant SNPs, a genome wide association study is first conducted 

as above.  The data set is then split into two halves at random (eg. half the animals in 

the first data set, the other half in the second data set).  The genome wide association 

study is then re-run for each half of the data.  When each half of the data confirmed a 

significant SNP in the analysis of the full data (ie a significant SNP in almost the 

same location), the information is used in the following way.  The position of the 

most significant SNP from each split data set was designated x1i and x2i respectively, 

for the ith QTL position (taken as the most significant SNP in a region from the full 

data set). So for n pairs of such SNPs, the standard error of the underlying QTL is 

calculated as ∑
=

−=
n

i
ii xx

n
xse

1
214

1
)( .  The 95% confidence interval is then the 

position of the most significant SNP from the full data analysis ±1.96 )(xse .   

 

Using this approach in a data set with 9918 SNPs genotyped on 384 Holstein-Friesian 

cattle, and for the trait protein kg, there were 24 significant SNP clusters (clusters of 

SNP putatively marking the same QTL, a cluster consists of 1 or more SNPs) in the 

full data, and the confidence interval for the QTL was calculated as 2Mb.      
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2.2.3 Avoiding spurious false positives due to population structure 
The very simple model above for testing association of a marker to phenotype 

assumes there is no structure in the population, that is it assumes all animals are 

equally related.    In livestock populations, or any population for that matter, this is 

unlikely to be the case.  Multiple offspring per sire, selection for specific breeding 

goals and breeds or strains within the population all create population structure.  

Failure to account for population structure can cause spurious associations (false 

positives) in the genome wide association study (Pritchard 2000).  A simple example 

is where the population includes a sire with a large number of progeny in the 

population.  In this case the sire has a significantly higher estimated breeding value 

than other sires in the population.  If a rare allele at a marker any where on the 

genome is homozygous in the sire, the sub-population made up of his progeny will 

have a higher frequency of the allele than the rest of the population.  As the sires’ 

estimated breeding value is high, his progeny will also have higher than average 

estimated breeding values.  Then in the genome wide association study, if the number 

of progeny of the sire is not accounted for, the rare allele will appear to have a 

(perhaps significant) positive effect.             

 

Spielman et al. (1993) proposed the transmission disequilibrium test (TDT) which 

requires that parents of individuals in the genome wide association study are 

genotyped to ensure the association between a marker allele and phenotype is linked 

to the disease locus, as well as in linkage disequilibrium across the population with it.  

In this way the TDT test avoids spurious associations due to population structure.  

However the TDT test has a cost in that genotypes of both parents must be collected, 

and this is often not possible in livestock populations.     

    

An alternative is to remove the effect of population structure using a mixed model:   

eZuX'1y n +++= gµ  

Where u is a vector of polygenic effect in the model with a covariance structure 

),0(~ 2
ai Nu σA , where A is the average relationship matrix built from the pedigree of 

the population, and 2
aσ is the polygenic variance.  Z is a design matrix allocating 

animals to records.  In other words, the pedigree structure of the population is 
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accounted for in the model.  Note that this is BLUP, with the marker effect and the 

mean as fixed effects and the polygenic effects as random effects.   

 

In the study of Macleod (2007) described in section 2.2.1, they assessed the effect of 

including or omitting the pedigree on the number of QTL detected in the experiment, 

in a simulation where no QTL effects were simulated (so all QTL detected are false 

positives), Table  2.1.  They found a significant increase in the number of false 

positives, when the polygenic effects were not fully accounted for. 

 

Table 2.1  Detection of type I errors in data with no simulated QTL.   

Significance level Analysis model  

p<0.005 p<0.001 p<0.0005 

Expected type I errors 40 8 4 

1.  Full pedigree model 39 (SD=14) 9 (SD=5) 4 (SD=3) 

2.  Sire pedigree model 

 

46* (SD=21) 11* (SD=7) 6* (SD=5.5) 

3.  No pedigree model  68**  (SD=31) 18** (SD=11) 10**  (SD=7) 

4.  Selected 27% - full 

pedigree 

 
 

54**  (SD=18) 12**  (SD=6) 7**  (SD=4) 

  

The results indicate that the number of type 1 errors (significant SNPs detected when 

no QTL exist) is significantly higher when no pedigree is fitted, and even fitting sire 

does not remove all spurious associations due to population structure.       

 

A problem arises if the pedigree of the population is not recorded, or is recorded with 

many errors.  One solution in this case is to use the markers themselves to infer the 

average relationship matrix (Hayes et al. 2007) or population structure (eg. Pritchard 

2000).   
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For a given marker single locus, a similarity index Sxy between two individuals x and y 

is calculated, where Sxy = 1 when genotype x = ii  (i.e. both alleles at loci l are 

identical) and genotype y = ii , or when x = ij  and y = ij . Sxy = 0.5 when x = ii  and 

y = ij , or vice versa, Sxy = 0.25 when x = ij  and y = ik, and Sxy = 0 when the two 

individuals have no alleles in common at the locus. The similarity as a result of 

chance alone was   where pi is the frequency of allele i in the (random 

mating) population, and a is the number of alleles at the locus. Then the relationship 

between individuals x and y at locus l is calculated as r l=(Sxy−s)/(1−s).  The average 

relationship between the individuals is calculated as the rl averaged over all loci.  

 

With large numbers of markers, average relationship matrices derived from markers 

can be very accurate, and can even capture mendelian sampling effects (eg. Two full 

sibs may be more or less related than 0.5 because they have more or less paternal and 

maternal chromosome segments than expected by chance.  This approach can also be 

used to correct for population structure across breeds or lines.  In Figure 2.4, the 

average relationship matrix derived from markers is shown for a combined Angus 

Holstein Population. 
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Figure 2.4.  Average-relationship matrix derived from 9323 SNP loci where the 

population consists of two breeds.  The diagonal element for the first Angus 

animal is in the bottom left hand corner and the element for the last Holstein 

animal in the top left hand corner.  
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There are a number of situations in which marker derived relationship matrices will 

be especially valuable.  When there is limited or no pedigree recorded in a population, 

marker genotypes may be the only source of information available to build 

relationship matrices.  For example, in livestock, there are many traits which can only 

be recorded in animals which are not candidates for selection, such as meat quality.  If 

there is no recorded pedigree linking selection candidates and commercial animals on 

which the trait is recorded, marker derived relationship matrices could be used in 

estimation of QTL effects for marker assisted selection.  Another example is 

populations where multiple sires are used in the same paddock of dams, such that 

recording pedigree is difficult.  Finally, in multi-breed populations including crosses 

between breeds, the marker derived relationship matrix offers a way to account for the 

different breed composition of the animals.   

 

2.3  Genome wide association experiments using hapl otypes    
Rather than using single markers, haplotypes of markers could be used in the genome 

wide association.  The effect of haplotypes in windows across the genome would then 

be tested for their association with phenotype.  The justification for using haplotypes 

is that marker haplotypes may be in greater linkage disequilibrium with the QTL 

alleles than single markers.  If this is true, then the r2 between the QTL and the 

haplotypes is increased, thereby increasing the power of the experiment.   

 

To understand why marker haplotypes can have a higher r2 with a QTL than an 

individual marker, consider two chromosome segments containing a QTL drawn at 

random from the population, which happen to carry identical marker haplotypes for 

the markers on the chromosome segment.  There are two ways in which marker 

haplotypes can be identical, either they are derived from the same common ancestor 

so they are identical by descent (IBD), or the same marker haplotypes have been 

regenerated by chance recombination (identical by state IBS).  If the “haplotype” 

consists only of a single SNP the chance of being identical by state is a function of the 

marker homozygosity.  Now as more and more markers are added into the 

chromosome segment, the chance of regenerating identical marker haplotypes by 

chance recombination is reduced.  So the probability that identical haplotypes carried 
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by different animals are IBD is increased.  If the haplotypes are IBD, then the 

chromosome segments will also carry the same QTL alleles.  As the probability of 

two identical haplotypes being IBD increases, the proportion of QTL variance 

explained by the haplotypes will increase, as marker haplotypes are more and more 

likely to be associated with unique QTL alleles.     

 

Just as for single markers, the proportion of QTL variance explained by the markers 

can be calculated.  Let q1 be the frequency of the first QTL allele and q2 be the 

frequency of the second QTL allele.  The surrounding markers are classified into n 

haplotypes, with pi the frequency of the i th haplotype.  The results can be classified 

into a contingency table: 

 Haplotype  

 1 i N  

QTL allele 1 p1q1-D1 piq1-Di pnq1-Dn Q1 

QTL allele 2 p1q2+D1 p1q2+Di pnq2+Dn Q2 

 p1 pi pn 1 

 

For a particular haplotype i represented in the data, we calculated the disequilibrium 

as Di =pi(q1)-piq1, where pi(q1) is the proportion of haplotypes i in the data that carry 

QTL allele 1 (observed from the data), pi is the proportion of haplotypes i, and q1 is 

the frequency of QTL allele 1.  The proportion of the QTL variance explained by the 

haplotypes, and corrected for sampling effects was then calculated as  

21

1

2

2

qq

p

Dn

i i

i

(h,q)r

∑
=

=  

For example, in a simulated population of Ne=100, and a chromosome segment of 

length 10cM, the proportion of the QTL variance accounted for by marker haplotypes 

when there were 11 markers in the haplotype was close to one, Figure 2.5.  [Note that 

if the effective population size was larger, the proportion of genetic variance 

explained by a 10cM haplotype would be reduced (Goddard 1991).]   
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Figure 2.5. Proportion of QTL variance explained by marker haplotypes with an 

increasing number of markers in a 10 cM interval 

 

A model for testing haplotypes in an association study could be similar to the model 

described above: 

eZuXg'1y n +++= µ  

 

However g is now a vector of haplotype effects rather than the effect of a single 

marker.  The haplotypes could be treated as random, as there are likely to be many of 

them and some haplotypes will occur only a small number of times.  The effect of 

treating the haplotypes as random is to “shrink” the estimates of the haplotypes with 

only a small number of observations.  This is desirable because it reflects the 

uncertainty of predicting these effects.  So ),0(~ 2
hi INg σ where I is an identity 

matrix and 2
hσ  the variance of the haplotype effects.  The g can be estimated from the 

equations:  
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Where 
2

2

1
a

e

σ
σλ = , and 

2

2

2
h

e

σ
σλ = .  Note that this model assumes no-covariance between 

haplotype effects.   In practise, the  haplotype variance is unlikely to be known, so 

will need to be estimated .  A REML program, such as ASREML (Gilmour et al 

2002), can be used to do this.      
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3.  Genomic selection 

3.1 Introduction to genomic selection 
One problem with LE-MAS, LD-MAS or Gene-MAS is that only a limited proportion 

of the total genetic variance is captured by the markers.  An alternative to tracing a 

limited number of QTL with markers is to trace all the QTL.  This can be done by 

dividing the entire genome up into chromosome segments, for example defined by 

adjacent markers, and then tracing all the chromosome segments.  This method was 

termed genomic selection by Meuwissen et al. (2001).  Genomic selection exploits 

linkage disequilibrium – the assumption is that the effects of the chromosome 

segments will be the same across the population because the markers are in LD with 

the QTL that they bracket.  Hence the marker density must be sufficiently high to 

ensure that all QTL are in LD with a marker or haplotype of markers.  Genomic 

selection has become possible very recently with the availability of 10s of thousands 

of markers and high throughput genotyping technology.       

 

Implementation of Genomic selection conceptually proceeds in two steps, 1.  

Estimation of the effects of chromosome segments in a reference population and 2.  

Prediction of genomic EBVs (GEBVs) for animals not in the reference population, for 

example selection candidates.  This second step is straightfoward:     To predict 

GEBVs for animals with genotypes but no phenotypes. the effect of the chromosome 

segments they carry can be summed across the genome: 

∑
∧

=
n

i
ii gXGEBV  

Where n is the number of chromosome segments across the genome, Xi  is a design 

matrix allocating animals to the haplotype effects at segment i, and 
∧

ig is the vector of 

effects of the haplotypes within chromosome segment i.   

   
The difficulty in step 1. is that a very large number of haplotype effects across the 

chromosome segments must be estimated (the 
∧

ig ), most likely from a data set where 

the number of phenotypic observations is less than the number of chromosome 

segment effects to be estimated.   
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It is important to note that genomic selection has the desirable property that because 

all chromosome segment effects are estimated simultaneously, the problem of over-

estimation of QTL effects due to multiple testing described in section 3.2.2 does not 

occur.   

 

Genomic selection can proceed using single markers, haplotypes of markers or using 

an IBD approach.  The methodologies that will be described in section 4.2 can be 

applied to either single markers or haplotypes.  The only difference will be in the 

number of effects to estimate per chromosome segment (ignoring the problems of 

inferring haplotypes).  In the case of single markers, there will be one effect per 

segment (eg. 
∧

ig are scalars).  In the case of marker haplotypes, there will be multiple 

effects per segment (eg. 
∧

ig are a vector).  We will describe the IBD approach 

separately.     

 

It is important to note that the following genomic selection procedures can be used to 

map QTL as well as predict GEBV.  Procedures such as the LDLA approach as 

described yesterday assume one QTL per chromosome.  Given the distribution of 

QTL effects, there are likely to be 100 or more QTL throughout the genome affecting 

a particular quantitative trait (eg. Hayes et al. 2006).  Therefore most chromosomes 

will carry at least two QTL affecting the trait, though one of these may have a very 

small effect.  Both estimates of effects and position of a QTL can be biased by other 

QTL on the same chromosome, especially if the QTL are closely linked.  The worst 

case scenario is that two linked QTL cancel each others effects, so none of the QTL 

are detected.  Alternatively, a ‘ghost’ QTL, with a very large confidence interval, can 

be positioned between two real QTL (Martinez and Curnow 1992).  Because genomic 

selection approaches can fit all QTL simultaneously, they can remove the effect of the 

QTL in brackets adjacent to the true QTL position, giving tighter confidence intervals.   

 

3.2 Methodologies for genomic selection  
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A number of approaches have been proposed for estimating the single marker or 

haplotype effects across chromosome segment effects for genomic selection.  A key 

difference between these approaches is the assumption they make about the variances 

of haplotype or single marker effects across chromosome segments.   

 

The simpler assumption is that the variance of haplotype effects is equal across all 

chromosome segments.  This is analogous to estimating breeding values where we 

assume that the breeding values are distributed ),0(~)( 2
aANV σu .  In the case of the 

chromosome segment effects, they would be distributed  ),0(~)( 2
gINV σg  where 

2
gσ is the variance of the effects across all segments.   

 

However this assumption does not capture our “prior” knowledge that some 

chromosome segments will contain QTL with large effects, some chromosome 

segments will contain QTL with small effects, and some chromosome segments will 

contain no QTL.  We can capture this prior knowledge by modelling the data at two 

levels.  The first level is at the level of the data including the overall mean, the error 

variance and the chromosome segment effects.  In this model, each chromosome 

segment has it’s own variance of haplotype or marker effects ),0(~)( 2
gii INV σg .  

The second model is at the level of the variance of chromosome segment effects, to 

allow these to be different for each approach. 

 

We shall consider genomic selection approaches with the simpler assumption of equal 

variances of effects across chromosome segments first.     

3.2.1.1 Least squares  
The first approach actually makes no assumptions regarding the distribution of 

chromosome segment effects, because it treats these effects as fixed in a least squares 

approach.  The approach is identical to that described for LD-MAS.  As described by 

Meuwissen et al. (2001) least squares genomic selection proceeds in two steps.   

1. Perform single segment regression analyses for every segment, i, using the 

model 

egX1y iin ++= µ  



 42 

where y is the data vector; µ is the overall mean; 1n
 is a vector of n (n=number 

of records) ones; gi represents the genetic effects of the haplotypes at the i th 1-

cM segment (the vector of values of 
∧

ijg for the different j but at the same i) ; 

Xi is the design matrix for the i th segment; and e is the error deviation.  The 

dimensions of gi will be (number of haplotypes within chromosome segment i 

x 1), while the dimensions of X i will be (number of records x number of 

haplotypes within chromosome segment i).   

• 2. Select the m most significant segments.  Estimate the effects of the 

haplotypes at these positions simultaneously using multiple regression 

egX1y iin ++= ∑
m

µ  where summation m is over all significant QTL 

positions.  All other haplotype effects are assumed to be zero.  

The least squares approach has two major problems.  One is the choice of significance 

level (arguments such as FDR could be used).  This can not be too lenient, or else the 

number of chromosome segment effects to estimate will be larger than the number of 

phenotypic records, in which case least squares cannot be used.  The other is that in 

the least squares approach, there is a selection of which chromosome segment effects 

to include in the estimation of breeding values based on the effect of the chromosome 

segment estimated from single segment regression.  As a result, the problem of over-

estimation of segment effects due to multiple testing will be incurred.  

3.2.2 Ridge regression and BLUP  
To overcome the problem of over-estimation of segment effects in the context of 

marker assisted selection, Whittaker et al. (2000) applied ridge regression.  In ridge 

regression, estimates of the gi are shrunk towards the mean, in an attempt to avoid the 

over-estimation of these effects.  This shrinkage can also allow all effects to be 

estimated simultaneously.  In ridge regression, all gi have a common variance.  Ridge 

regression can be applied to genomic selection: 

yX'1
λI)X'(Xg −+=

∧
 

where X is a matrix allocating all marker genotypes or haplotypes to phenotypes, and 

y is a vector of phenotypes.  The difficulty with ridge regression is that the choice of λ 

is arbitrary.  Further, if a very small value λ is chosen, there may not be a unique 
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solution for the model with the large number of gi fitted.  Methods for selecting values 

of λ are given in Xu (2003) and Whittaker et al. (2000).  Xu (2003) concluded that 

ridge regression was not a viable choice for QTL mapping if the model includes 

markers across the entire genome.  There reason was that ridge regression treats all 

effects equally across all loci, whereas in fact many markers have negligible effects.  

However ridge regression may still perform reasonably well in the context of 

estimating genomic breeding values, as the effects are accumulated across many 

segments.          

If λ= 22 / ge σσ  in the equation for ridge regression, this is in fact BLUP as used by 

Meuwissen et al. (2001).  The BLUP assumes the variance of haplotype effects at 

each chromosome segment is the same.   

An important question is what value of 2
g should be used in the BLUP (eg. the 

variance of haplotype effects at a chromosome segment).   Meuwissen et al. (2001) 

dealt with this problem by calculating the genetic variance expected from a genetic 

drift-mutation model, and assuming the distribution of QTL effects was as given by 

Hayes and Goddard (2001).  See their paper in the appendix for details.   

Another way of estimating 2g would be to first estimate the total additive genetic 

variance (using REML for example) then divide by the number of chromosome 

segments.   

An example of genomic selection using BLUP follows.  Consider the following data 

set for animals with a single chromosome, with 4 markers defining three chromosome 

segments.  The markers are SNPs, so there are 4 possible haplotypes per segment.  

Phenotypes were “simulated” with an overall mean of 2, an effect of haplotype 1 in 

the first segment of 1, an effect of haplotype 1 in the second segment of -0.5, and a 

normally distributed error term with mean 0 and variance 1.  The data is as follows: 
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Haplotype 
Segment 1    Haplotype Segment 2  

Haplotype Segment 
3   Phenotype 

Animal P M P M P M   
1 1 1 2 2 1 1 3.41 
2 1 2 1 2 1 1 2.47 
3 2 2 1 2 1 2 2.32 
4 1 3 2 3 2 1 2.32 
5 1 4 1 3 2 1 1.75 

Note that there are 9 haplotypes observed in total (4 for the first segment, 3 for the 

second segment, and 2 for the third segment), while there are only 5 phenotypic 

records.     

The design matrix (X) for this data set is (in bold): 

 Segment 1 haplotypes Segment 2 haplotypes Segment 3 haplotypes 

Animal  1 2 3 4 1 2 3 1 2 

1 2 0 0 0 0 2 0 2 0 
2 1 1 0 0 1 1 0 2 0 
3 0 2 0 0 1 1 0 1 1 
4 1 0 1 0 0 1 1 1 1 
5 1 0 0 1 1 0 1 1 1 

The vector 1n’ is [1 1 1 1 1]’ 

The mixed model equations are 









=
























+ ∧

∧

yX'

y'1
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IλXX'X'1

X'1'11 n
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nnn  

Where 
2

2

g

e

σ
σλ = and I  is an Identity matrix (total number of haplotypes x total number 

of haplotypes).   

 

 

 

Assuming a value of 1 for λ, the mixed model equations with our data are: 
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5 5 3 1 1 3 5 2 7 3    12.27 
5 8 1 1 1 2 6 2 8 2    13.36 

3 1 6 0 0 3 3 0 4 2 
 ∧

µ   7.11 
1 1 0 2 0 0 1 1 1 1    2.32 
1 1 0 0 2 1 0 1 1 1    1.75 

3 2 3 0 1 4 2 1 4 2 
 ∧

g   6.54 
5 6 3 1 0 2 8 1 8 2    13.93 
2 2 0 1 1 1 1 3 2 2    4.07 
7 8 4 1 1 4 8 2 12 3    18.15 
3 2 2 1 1 2 2 2 3 4    6.39 

Giving the following estimates of the mean and Haplotype effects: 

Effect Estimate 

Mean  
2.11 

Segment 1 Haplotype 1 
0.15 

 Haplotype 2 
0 

 Haplotype 3 
-0.05 

 Haplotype 4 
-0.1 

Segment 2 Haplotype 1 
-0.16 

 Haplotype 2 
0.31 

 Haplotype 3 
-0.15 

Segment 3 Haplotype 1 
0.09 

 Haplotype 2 
-0.09 

With so few records, the accuracy of estimating the haplotype effects is low. 

Now if we genotype a group of young animals we can estimate their GEBV from the 

haplotypes they carry:   

∧
= gXGEBV  

Consider the following animals: 

 Haplotype segment 1 Haplotype segment 2 Haplotype segment 3 

Animal Paternal Maternal Paternal Maternal Paternal Maternal 

6 1 2 1 2 1 1 

7 1 1 2 2 1 2 

8 2 3 2 2 1 2 

9 1 4 3 1 1 2 

10 2 4 2 2 1 2 
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The X matrix for the new animals is: 

 Segment 1 haplotypes Segment 2 haplotypes Segment 3 haplotypes 

Animal  1 2 3 4 1 2 3 1 2 

6 
1 1 0 0 1 1 0 2 0 

7 
2 0 0 0 0 2 0 1 1 

8 
0 1 1 0 0 2 0 1 1 

9 
1 0 0 1 1 0 1 1 1 

10 
0 1 0 1 0 2 0 1 1 

Using the values of 
∧
µ and 

∧
g from above gives the following vector of GEBV 

Animal GEBV TBV 

6 
0.48 0.5 

7 
0.91 2 

8 
0.57 0 

9 
-0.26 0.5 

10 
0.52 0 

As the data was simulated, we also have a true breeding value (TBV) for these 

animals (the sum of the true haplotype effects described above).  We can correlate the 

GEBV and TBV to get the accuracy of genomic selection in this case, which is 0.43 in 

this case. 

With BLUP the chromosome segment (or QTL) with the largest variance will tend to 

have it’s variance over-estimated, and this will still decrease the accuracy of genomic 

selection somewhat although much less than when the g are treated as a fixed effect. 

Better estimates of breeding value can be obtained by methods that allow the variance 

of the chromosome segment effects to vary between chromosome segments.   

3.2.4 Bayesian methods 
If we adopt a Bayesian approach, we can capture our prior knowledge that there are 

some chromosome segments containing QTL of large effects, some segments with 

moderate to small effects, and some segments with no QTL at all when we estimate 

the effects of haplotypes (or single markers) within the chromosome segments.   
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3.2.4.1 Optional topic: Bayesian statistics refresher 

Bayes theorem uses a simple rule about conditional probabilities 

)(/)()|()(/)()|( yPxPxyPyPxandyPyxP ==  

This can be understood with an example.  Suppose I have a jar of coins in which 99% 

are fair coins and 1% are double headed coins.  I take a coin at random and toss it 

three times and observe three heads.  What is the probability the coin is a double 

headed coin? Let y = the data, eg.  3 heads from 3 tosses, x is this is a double headed 

coin, x’ this is a fair coin. Then P(x)=0.01,P(x’)=0.99, P(y|x)=1.0 and P(y|x’) =0.125 

(eg. 0.5^3). Then the outcomes of the experiment can be represented in a table: 

 P(x or x’) P(y|x or x’) P(y|x)*P(x) 

Fair coin 0.99 0.125 0.124 

Double headed coin 0.01 1.0 0.01 

P(y)   0.134 

Therefore the probability that this is a double headed coin given I observed three 

heads from three tosses is )(/)()|()|( yPxPxyPyxP = =1.0*0.01/0.134 = 0.075.  

That is despite the outcome of three heads there is only a small probability of the coin 

being double headed because doubled headed coins are so rare.   

Bayes theorem is useful because often it is easy to calculate P(y|x), while it is more 

difficult to calculate P(x|y), as in the above example.   

After the experiment has been done, the P(y) will be a constant in all calculations we 

do.  So we can also write Bayes theorem as  

)()|()|( xPxyPyxP ∝  

Where the symbol ∝ indicates is proportional to.  This is useful because the 

calculation of P(y) may be difficult. 

The probability P(x|y) is called the posterior probability because it is the probability 

after the experiment has been done.  It is calculated from two terms.  P(y|x) is the 
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likelihood used by frequentists.  P(x) is called the prior probability because it is the 

probability of x before the experiment was conducted.  This allows us to incorporate 

prior knowledge into the estimate of x.    

In practise, calculating the posterior distribution (and integrating out nuisance 

parameters) may be difficult to do.  Often it is impossible to find a formula that gives 

the solution.  Bayesians have developed a number of approaches to overcome this 

problem. 

- Choose priors that make the algebra easy.  So called conjugate prior 

distributions have the property that, when combined with a particular 

distribution for the data, they yield a recognised distribution for the 

posterior.  For instance if the data are normally distributed, and a normal 

prior is used for a parameter affecting the data, then the posterior 

distribution of that parameter will be normally distributed. 

- Numerical integration.  If you can calculate the height of the posterior 

distribution at every point, you can integrate it over nascence parameters 

using numerical integration such as Simpsons rule.   

- Simulation.  If you can draw samples from the posterior distribution, you 

can use the samples to approximate the distribution.  For example the 

mean of many samples is a good approximation to the mean of the 

distribution. This is what Markov Chain Monte Carlo (MCMC) methods 

such as Gibbs sampling do.       
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3.2.4.2 Bayesian method with a prior that assumes many QTL have a small effect 

and few have a large effect 

If we allow the variance of the effects across chromosome segments to vary, then the 

variances 2)( giV σ=ig  must be estimated.  Meuwissen et al. (2001) described a 

Bayesian method they termed Bayes Method A to estimate chromosome segments 

effects and their variances simultaneously. 

The method modelled the data at two levels.  The first is at the level of the data as 

above: 

egX1y iin ++= µ  

The prior distribution of the error variance 2
e was -2(-2, 0), which yields an 

uninformative prior (eg the prior receives little or no weight in the calculation).  The 

prior distribution of the mean µ was uniform and uninformative, while the prior 

distribution of haplotype effects within chromosome segment i was ),0(~ 2
giN σig .  

Note that this is equal to BLUP estimation of the chromosome segment effects with 

different variances for each segment.     

The second level of model is at the variances of chromosome segment effects.  In 

Meuwissen et al (2001), the prior distribution of the variances of effects across 

chromosome segments was consistent with many QTL of small effect and few of 

large effect.  The prior distribution was the scaled inverted chi-square distribution, 

),(~)(Pr 22 Svior gi
−χσ , where S is a scale parameter and  is the number of degrees of 

freedom.  The values of v and S were chosen as v=4.012 and S =0.002.  These values 

were chosen to give a distribution similar to what would be expected from the 

distribution of QTL effects derived by Hayes and Goddard (2001) and the expected 

heterozygosity of QTL under the neutral model (see Appendix for details).     

The posterior distribution of 2
giσ  combines information from the prior and the data.  

Information from the data is included by conditioning on the chromosome segment 

effects, eg.  )|( 2
iggiP σ .  An advantage of using an inverted chi-square distribution as 

a prior for the variances is that with normally distributed data, the posterior is also 
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inverted chi-squared.  In fact if the prior for our chromosome segment variances has 

the scale parameter S, and degrees of freedom v, then the posterior for 2
giσ   given the 

chromosome segment effects, )|( 2
iggiP σ is an inverted chi-squared scaled by S+gi’g i 

and v+ni degrees of freedom:  

),()|( 22
iii g'gg ++= − SnvP igi χσ  

 

where ni is the number of haplotype effects at segment i.   

We cannot use this posterior distribution directly for estimating the 2
giσ  because it is 

conditional on the unknown gi effects. Meuwissen et al. (2001) therefore used Gibbs 

sampling to estimate effects and variances.   

The Gibbs chain could proceed as follows: 

Step 1.  Initialise the vectors of haplotype effects for each vector of chromosome 

segment effects gi for j=1,ni where ni is the number of haplotypes at the chromosome 

segment, with a small positive number.  The overall mean µ must also be initialised.       

Step 2.  Update the  2gi for the ith  chromosome segment by sampling it from the fully 

conditional distribution  ),(2
ii g'g++− Snv iχ , where v is 4.012 and S is 0.002, and ni 

is the number of haplotype effects at the i th chromosome segment. 

Step 3.  Given the gi and µ calculate the values for e as µ'1n−−= Xgye , where X = 

[X1 X2 X3 ...] is the design matrix of all haplotype effects; and g is a vector of all 

haplotype effects across chromosome segments.  Then update the error variance, 2
e 

by drawing a single sample from ),2(2
ii e'e−− nχ   

Step 4.  Sample the overall mean µ given the updated error variance from a normal 

distribution with mean ( )Xg1y1 '
n

'
n −

n

1
and variance ne /2σ , where X = [X1 X2 X3 ...] 

is the design matrix of all haplotype effects; and g is a vector of all haplotype effects. 
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Step 5.  Sample all the haplotype effects gij given the newly sampled µ, 2
e and 2

gi 

from a normal distribution with mean 
22 / ie σσ

µ
+

−− =

ij
'
ij

n
'
ij0)(ij

'
ij

'
ij

XX

1XXgXyX
 , where Xij is 

column of X of effect gij; g(ij=0 ) equals g except that the effect of gij is set to zero, and 

variance )/( 2

2
2

gi

e
e σ

σσ +ij
'
ij XX .   

Step 6.  Repeat Step 2 (using the updated gi) to Step 5 for a large number of cycles.                  

Other authors have published similar methods but with different priors used for the 

variance of chromosome segment effects.  In Xu (2003) this was 1/ 2
0χ  (eg. an 

inverted chi-square distribution with 0 degrees of freedom).  Xu (2003) also described 

their method for single SNP markers, rather than marker haplotypes.  Therefore the 

matricies X i are the design matricies for the effect of a single marker, so Xij =1 if the 

i th SNP genotype for individual j is a1a1, Xij=0 if the ith SNP genotype for individual j 

is a1a2, and Xij=-1 if the ith SNP genotype for individual j is a2a2.  The implicit 

assumption in Xu (2003) is that the partial regression coefficient, gi, (the effect of 

marker i on the trait), will absorb partly the effects of all QTL located between 

markers i-1 and i+1.  The validity of this assumption will depend on the LD between 

the markers and the QTL.    

 

Ter Braak et al. (2005) argued that prior used by Xu (2003) would result in an 

improper posterior distribution, in particular a posterior of gi with infinite mass near 

zero.  To ensure a valid posterior, they altered the prior distribution of variance of 

chromosome segment effects to be 1/2
002.0−χ .   

 

Xu (2003) actually proposed their method for QTL mapping rather than genomic 

selection, claiming that the method gave more precise estimates of QTL location than 

single QTL models.  This was because the effect of a QTL was removed in adjacent 

marker brackets so the QTL were mapped to a smaller interval.  The approach also 

gave more accurate estimates of QTL effect, as the problem of over-estimating the 

QTL effect due to multiple testing were avoided.  Xu (2003) describe applications for 

plant populations for QTL mapping such as backcross, double haploid, or F2.   
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Meuwissen et al. (2001) pointed out that in reality, the distribution of genetic 

variances across chromosome segments is that there are many chromosome segments 

which contain no QTL, and relatively few chromosome segments which do contain 

QTL. However, the prior density of method BayesA does not actually reflect this, the 

prior does not have a density peak at 2
gi = 0; in fact its probability of 2

gi = 0 is 

infinitesimal.  Meuwissen et al. (2001) addressed this in their Method BayesB.  

Method BayesB used a prior that has a high density, , at 2
gi = 0 and has an inverted 

chi-square distribution for 2gi > 0; .  The prior distribution was  

 

 

where = 4.234 and S = 0.0429 yield the mean and variance of 2
gi given that 2

gi > 0 

(see Appendix for derivation of v and S values). 

Figure 4.1 Illustrates the difference between the prior distribution of variances of 

chromosome segment effects used in method Bayes B and that used in method 

BayesA.    
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Figure 4.1 A.  Prior distribution of variances of chromosome segment effects 
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segment effects used in method BayesB in Meuwissen et al. (2001), for 20% of 

chromosome segments containing QTL.   

The figure illustrates the infinitesimal density of the prior used in BayesA at 0, and 

the much higher mass near (and actually at) zero for the prior used in BayesB.  The 

Gibbs sampler described in Method BayesA cannot be used in method BayesB, as it 

will not move through entire sampling space. This is because the sampling of 2
gi = 0 

from the posterior distribution of Var(of 2gi ) is not possible if g'
igi >

 0, which it will 

never be as gi = 0 has an infinitesimal probability if 2
gi > 0.  This problem was 

resolved by sampling 2gi and gi simultaneously using a Metropolis-Hastings 

algorithm (see Appendix for details).   

3.2.5 Evaluation of accuracy of genomic selection methods  
To evaluate their methods (least squares, BLUP, Bayes A and Bayes B), a genome of 

1000 cM was simulated with a marker spacing of 1 cM.  The markers surrounding 

every 1-cM region were combined into marker haplotypes. Due to finite population 

size (Ne = 100), the marker haplotypes were in linkage disequilibrium with the QTL 

located between the markers.  The effects of the chromosome segments were 

predicted in one generation of 2000 animals, and the breeding values for the progeny 

of these animals were predicted based only on the markers which they carried, Table 

4.1.   

 

Table 4.1. Comparing estimated vs. true breeding values in progeny with no 

phenotypic records (from Meuwissen et al. (2001).  Chromosome segments were 

estimated in a population of 2000 animals.  

 

 rTBV;EBV + SE bTBV.EBV + SE 

 

LS 0.318 ± 0.018 0.285 ± 0.024 

BLUP 0.732 ± 0.030 0.896 ± 0.045 

BayesA 0.798 0.827 

BayesB 0.848 + 0.012 0.946 + 0.018 
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Mean of five replicated simulations LS, least squares; BLUP, best linear unbiased 

prediction; Bayes, Bayesian method with inverse chi-square prior distribution and 

where the prior density of having zero QTL effects was increased; rTBV;EBV, 

correlation between estimated and true breeding values (equals accuracy of selection); 

bTBV;EBV, regression of true on estimated breeding value.  

   

The least squares method does very poorly, primarily because the haplotype effects 

are over-estimated.  The increased accuracy of the Bayesian approach occurs because 

this method sets many of the effects of the chromosome segments to close to zero in 

BayesA or zero in BayesB, and “shrinks” the estimates of effects of other 

chromosome segments based on a prior distribution of QTL effects.      

  

3.3  Factors affecting the accuracy of genomic sele ction 
While the simulations demonstrate genomic selection has huge potential to increase 

rates of genetic gain, several key questions remain regarding it’s implementation.  

These are  

1) How many markers are required, determined by the extent of LD. 

2) How many phenotypic records are required in the initial experiment estimating 

the effect of chromosome segments 

3) How do non-additive effects affect the accuracy of genomic selection. 

 

3.3.1 Extent of linkage disequilibrium and number of markers 
required 

The arguments here are similar to those given in chapter 3 for the number of markers 

required for LD-MAS.  For genomic selection to work, the haplotypes or single 

markers must be in sufficient LD with the QTL such that the haplotype or single 

markers will predict the effects of the QTL across the population.  For genomic 

selection to be as successful as in the simulations of Meuwissen et al. (2001), the level 

of LD between adjacent markers should be r2>=0.2, as this was the level of LD there 

simulations generated.  Solberg et al. (2006) used simulation of a population with Ne 

100 to assess the effect of marker spacing on the accuracy of genomic selection (with 

BayesMethodB).  They found a drop in accuracy of 20% as marker spacing was 

increased from one marker every 0.5cM to one marker every 4cM.  Calus et al. (2007) 
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used simulation to assess the effect of the average r2 between adjacent marker pairs on 

the accuracy of genomic selection (where the accuracy was the correlation of true 

breeding values and GEBV for a group of un-phenotyped animals).  They found that 

accuracy increased dramatically as the average r2 between adjacent markers increased, 

from 0.68 when the average r2 between adjacent markers was 0.1, to 0.82 when the 

average r2 between adjacent markers was 0.2, Figure 4.2.    

 

In dairy cattle populations, an average r2 of 0.2 between adjacent markers is only 

achieved when markers are spaced every 100kb.  As the bovine genome is 

approximately 3 000 000kb, this implies that in order of 30 000 markers are required 

for genomic selection to be successful!   

 

3.3.2 Haplotypes or single markers 
 
Closely related to the effect of the extent of linkage disequilibrium on the accuracy of 

genomic selection is the effect of using single markers rather than haplotypes.  The 

advantage of haplotypes over single markers in genomic selection is dependent on 

how accurately the haplotypes identify identical by descent chromosome segments 

compared to the accuracy with which single markers identify identical by descent 

chromosome segments.  This can be quantified as the proportion of QTL variance 

which is explained by the haplotype effects compared to the proportion of QTL 

variance which is explained by single marker effects, as discussed in section 2.3.  

Calus et al. (2007) compared the accuracy of GEBV for progeny without phenotypic 

records from genomic selection using single markers or marker haplotypes, in 

simulated data.               
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Figure 4.2  Accuracies of genomic breeding values estimated for animals with no 

phenotypic information with three different models of genomic selection: SNP1, 

using the single marker approach of Xu (2003), with the addition of a polygenic 

effect in the model; HAP_IBS using haplotypes of adjacent markers and method 

BayesB of Meuwissen et al (2001) to estimate haplotype effects, with the addition 

of a polygenic effect; HAP_IBD using windows of haplotypes of 10 markers in 

the approach of Meuwissen and Goddard (2004).  With permission from the 

authors., Calus et al. (2007).  

They constructed haplotypes from the two adjacent markers defining each 

chromosome segment.  They found that the advantage of using haplotypes increased 

at lower marker densities (or lower r2 values between adjacent makers).  When the r2 

between adjacent markers was 0.2 or greater, there was little advantage in using 

marker haplotypes, Figure 4.2  Presenting the accuracy as a function of the average r2 

between adjacent markers, as Calus et al. (2007) do, is appealing as the results can be 

used to infer the number of markers required to achieve a desired accuracy of 

genomic selection given the extent of LD observed in the livestock species in 

question.  However, in all cases the accuracy achieved with the IBD approach was 

higher than regression on single markers or markers haplotypes.  This was particularly 

true at low densities of markers, probably due to the contribution from linkage.    
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3.3.4 Number of phenotypic records in the reference population  
 
The accuracy of genomic selection will depend on the number of haplotype effects at 

the chromosome segments, and the number of phenotypic records per unique 

haplotype, or per marker allele if single markers are used.  The more phenotypic 

records available, the more observations there will be per haplotype and the higher the 

accuracy of genomic selection.  There are also large differences between statistical 

methodologies in the accuracy achieved with a low number of records.  Meuwissen et 

al. (2001) compared the accuracy of least squares, BLUP and BayesB with different 

numbers of phenotypic records, Table 4.2. Their results also suggest that in the order 

of 2000 phenotypic records are required to accurately estimate the haplotype effects.  

In their simulation, a heritability of 0.3 was used.  If the heritability were higher, so 

that phenotype was a more accurate predictor of genotype, fewer records may be 

required.  For example, in dairy cattle, daughter yield deviations (DYDs) are often 

used as the phenotype.  DYDs can have an accuracy of 0.99.          

Table 4.2: Correlations between true and estimated breeding values 

when the number of phenotypic records is varied (from Meuwissen et 

al. 2001, with permission from the authors) 

 

 

No. of phenotypic 
records 

 
 500 1000 2200 

 
Least squares 0.124 0.204 0.318 

Best linear unbiased prediction (BLUP) 0.579 0.659 0.732 

BayesB 0.708 0.787 0.848 

 

3.4 Non additive effects in genomic selection 
While breeding values by definition should include only additive effects (genetic 

merit which is passed from one generation to the next), in some cases it may be 

desirable to predict genetic merit which better predict an animals actual phenotype, 

for example through the inclusion of dominance and epistatic effects.  If phenotypes 

are used in the estimation of chromosome segment effects (rather than DYDs for 

example), inclusion of epistatic and dominance effects in the model could improve the 
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accuracy of estimating the additive effect of the chromosome segment effects.  

Further, dominance and epistatic effects can be exploited to produce sets of progeny 

with maximum genetic merit, through mate selection for example (Kinghorn 1998).   

 

Estimates of dominance effects with single markers is straight forward, requiring 

extension of the genetic model to estimate two effects per SNP, rather than one: 

∑ ∑ +++=
p

i
i

p

i
iijiijj edwgxy µ  

Where xij and wij are defined as 2=ijx and 1−=ijw for genotype A1A1, 0=ijx  and 

1=ijw for A1A2 and , 2−=ijx  and 1−=ijw for A2A2.  If G11, G12 and G22 are the 

genotypic coefficients for the three genotypes, then 2211 GGgi −= for the additive 

effect and 1122122 GGGdi −−= .  The x and w coded in this way are independent and 

each has a zero expectation and unity variance.  The Bayesian estimation method of 

Xu (2003) can then be extended to estimate di as well as gi.     

 

Estimation of epistatic effects is more difficult, due to extremely large number of 

marker by marker interactions in the single marker approach, or haplotype by 

haplotype interactions in the haplotype approach.  Xu (2007) extended the single 

marker Bayesian approach in Xu (2003) to account for epistatic effects. 

A model including epistatic effects can be written as: 

∑ ∑
= >

+×+=
k

l

k

ll
llllll gggy

1 '
'' )( εαα  

Where 'll gg × is the element wise multiplication of vectors gl
 and gl’ , αl is the main 

effect of locus l, and αll’  is the epistatic effect between locus l and l’ .  The model can 

be simplified to fit into the methodology of Xu (2003) by using j to index the j th 

genetic effect for j=1,q, where q=k(k+1)/2.  The model can then be re-written  

∑
=

+=
q

1j
jj εZy γ  

For example, Zj=gl and γj=αl if the j th effect is a main effect, and Zj= 'll gg × and 

γj=αll’  if the j th effect is an epistatic effect.   
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Xu (2007) used a similar approach to that in Xu (2003) to estimate the γj.  A normal 

prior was assigned to the γj , where ).,0(~ 2
jj N σγ   The prior assigned to the 2jσ was 

./1~ 2
),(

2
ωτχσ j   For details on this prior distribution see Xu (2007). 

 

Xu (2007) showed that epistatic effects could be estimated both in simulated data with 

this approach using 600 records in a back-cross design.  They also applied the method 

to real data from a barley backcross experiment. 

 

Gianola et al. (2006) presented semi-parametric procedures for genomic selection 

which allowed them to estimate interactions between potentially hundreds of 

thousands of markers.  Their methods included kernel regression, which regress 

marker effects according to a smoothing parameter h, embedded into the standard 

mixed model equations.  Their model treated the variance of effects across 

chromosome segments as equal.  In a small example, they achieved accuracies of up 

to 0.85 for predicted genotypic values in selection candidates with no phenotypes, 

when both dominance and epistasis were simulated.  For more details see their paper.       

 

3.5 Genomic selection with low marker density 
The IBD methodology for genomic selection is particularly suited to cases where 

marker density is low, as in this case there will be some advantage in including the 

linkage information in the estimation of chromosome segment effects carried by each 

animal.  Calus et al. (2007) demonstrated that use of the IBD approach can achieve 

high accuracies of genomic selection even with levels of r2 between adjacent markers 

as low as 0.1, Figure 4.2.  This result is however dependent on population structure.  

For example large sire half sib groups in the population will allow accurate estimation 

of sire haplotypes, such that linkage information contributes considerably to the 

accuracy of genomic selection.        

 

In LD-MAS, a polygenic breeding value is included in the GEBV to pick up genetic 

variance not captured by the markers.  In genomic selection as specified by 

Meuwissen et al. (2001), a polygenic component is not included in the prediction of 

GEBVs.  However if the available marker density is not sufficient to ensure all QTL 

are in high LD with a marker of haplotype, inclusion of a polygenic component in the 
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GEBV from genomic selection would recapture some of the effects of the QTL which 

are not in sufficient LD with markers.   

 

Even with a sparse marker map, genomic selection can also be used to increase the 

efficiency of development of composite lines (Piyasatian et al. 2006).  Crosses 

between breeds will exhibit much greater levels of LD than within breed populations.  

Piyasatian et al. (2006) demonstrated that the genetic merit of composite lines can be 

improved by using genomic selection to capture chromosome segments with the 

largest effects from the contributing breeds, even with a sparse marker map.   

 

3.6 Genomic selection across populations and breeds  
In practise Genomic selection is always applied in a population that is different to the 

reference population where the marker effects are estimated.  It might be that the 

selection candidates are from the same breed, but are younger than the reference 

population, or they could be from a different selection line or breed.  Genomic 

selection relies on the phase of LD between markers and QTL being the same in the 

selection candidates as in the reference population.  However as the two populations 

diverge, this is less and less likely to be the case, especially if the distance between 

markers and QTL is relatively large.  In section 1.5 we used the correlation between r 

in two populations, corr(r1,r2), to assess the persistence of LD across populations.  No 

if the chromosome segment effects are estimated in population 1, and GEBVs in that 

population can be predicted with an accuracy x1, then the GEBVs of animals 

population 2 may be predicted from the chromosome segment effects of population 1 

with an accuracy x2 = x1*corr(r1,r2).  For each set of populations, one can work out the 

marker density that is required to obtain a corr(r1,r2) = 0.9 (De Roos et al. 2007).    

  

In the above, we have assumed that effect of QTL alleles are similar in different 

breeds and populations.  For some QTL which have been traced to known mutations, 

the alleles do act reasonably similarly in different breeds and populations.  For 

example, the A allele of the DGAT1 gene results in increased fat yield and reduced 

protein yield and milk volume in New Zealand Holstein-Friesians, Jersey’s and 

Ayshires (Spelman et al. 2002).  However while the size of the effects are consistent 

for protein and milk volume in the Holstein-Friesian and Jersey breeds, the size of the 
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fat response in Holstein-Friesians is nearly double that for Jerseys (Spelman et al. 

2002).  Another problem is that we have assumed that the same mutations affecting 

production traits are polymorphic in different breeds.  This is true for some well 

characterised mutations such as the K232A mutation in DGAT1, which is 

polymorphic in Holsteins, Jerseys, Aryshires and some Bos indicus breeds (Spelman 

et al. 2002, Kaupe et al. 2004).  Other mutations, such as some of the functional 

mutations in the myostatin gene, appear to breed specific (Dunner et al. 2003).  One 

solution would be to use a multi-breed reference population, so that all the genetic 

variants are captured.  Finally, genotype by environment interaction may also reduce 

the accuracy of predicted GEBV when the chromosome segment effects are estimated 

from animals in another population.  

 

3.7 How often to re-estimate the chromosome segment  
effects?  
 

If the markers used in genomic selection were actually the underlying mutations 

causing the QTL effects, the estimation of chromosome segment effects could be 

performed once in the reference population.  GEBVs for all subsequent generations 

could be predicted using these effects.  A more likely situation in practise is that there 

will be markers with low to moderate levels of r2 with the underlying mutations 

causing the QTL effect.  Over time, recombination between the markers and QTL will 

reduce the accuracy of the GEBV using chromosome segment effects predicted from 

the original reference population.  Meuwissen et al. (2001) used simulations to 

investigate the change in accuracy of GEBV with an increasing number of generations 

between the reference population and the population for which GEBV were estimated, 

Table 4.3. 

 

Table 4.3. The correlation between estimated and true breeding values in 
generations 1003–1008, where the estimated breeding values are obtained from 
the BayesB marker estimates in generations 1001 and 1002.  From Meuwissen 
et al. (2001).  

 
Generation rTBV;EBV 
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1003 0.848 

1004 0.804 

1005 0.768 

1006 0.758 

1007 0.734 

1008 0.718 

The generations 1004–1008 are obtained in the same way as 1003 from their 
parental generations.  

 
 

After five generations, the decline in accuracy of GEBV was large.  This suggests that 

with the levels of LD simulated in Meuwissen et al. (2001), re-estimation of the 

chromosome effects should take place every 3 generations.   

 

De Roos et al (2007) investigated the same issue using real SNP data from both Dutch 

and Australian Holstein Bulls.  They calculated the correlation of r values at different 

marker distances for sub-divisions of the same population across time, as an indicator 

of persistency of marker-QTL phase across generations.  They found correlation of r 

values between Dutch Holstein bulls before 1995 and Dutch Holstein calves born in 

2006 is 0.9 at 135kb.  They concluded from this data that with 20,000 markers, the 

predictions of chromosome segment effects should be usable for two generations, as 

accuracy will be reduced only slightly (by a factor 0.9) by breakdown of LD phase 

over this time.   

 

3.8 Cost effective genomic selection 
Depending on the genotyping technology used, the cost of genotyping animals for ~ 

30 000 SNPs may be $500, while the cost of genotyping animals for ~ 50 SNPs may 

be as low as $20.  If the number of markers required to apply genomic selection can 

be reduced, this could represent a large saving to the breeding program (and may 

make the difference between applying or not applying genomic selection).   

   

There are two possibilities to reduce the number of markers in genomic selection.  

When the method BayesB of Meuwissen et al. (2001) is applied to estimate 

chromosome segment effects in the reference population, many of the chromosome 

segment effects will be set to close to zero.  So genotyping the markers in these 
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segments in animals where GEBVs are to be predicted using generations has no value.  

In other words only the subset of markers in chromosome segments with a non-zero 

effect need be genotyped.  One problem with this approach occurs when genomic 

selection is extended to multiple traits.  If the selection criteria includes say 30 traits, 

and there are 50 markers per trait with non-zero effects, then the total number of 

markers to be genotyped may be ~ 1500.  For most genotyping platforms, the cost of 

genotyping 1500 markers is close to the cost of genotyping 30000 markers! 

 

 

 

3.9 Optimal breeding program design with genomic se lection 
Genomic selection allows prediction of very accurate EBVs for young animals.  The 

effect of such information on the optimal breeding program design for the different 

livestock industries could be profound.   

 

In dairy cattle breeding, progeny testing is currently used to identify bulls of high 

genetic merit.  A good description of the progeny test scheme was given by Schaeffer 

et al. (2006)  “In the progeny test scheme, a number of elite cows are identified each 

year as the dams of young bulls, and these cows are mated to specific sires”.  At one 

year of age, the young bulls are test mated to a large number of cows in the 

population, in order that they will have about 100 daughters with their first EBVs for 

production and other traits.  Approximately 43 months later the daughters from these 

matings complete their first lactations and the young bull EBVs for production are 

produced with an accuracy of approximately 75%.  At this point the young bull is 

proven or returned to service.”  As suggested by Schaeffer et al. (2006), genomic 

selection allows GEBVs with an accuracy of 0.75 or greater to be calculated for bull 

calves.  Bull calves can therefore be selected at this stage, rather than following 

progeny testing.  This reduces the generation interval by at least half.  Further genetic 

gains can be made by genotyping the elite bull dams and selecting a smaller number 

for mating to specific sires.   Schaffer (2006) suggested the effect of genomic 

selection may be to shift the structure of the dairy cattle breeding industry to a model 

similar to that used by the poultry and swine industries, where companies maintain a 

nucleus of elite animals “within house”.  Another effect of genomic selection may be 
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more appropriate balance in the direction of genetic gain.  Currently in the dairy 

industry, large gains are made for production traits, while the gains in fertility are 

relatively smaller, in part due to the lower accuracy of fertility EBVs (and also 

because production and fertility are unfavourable correlated).  Genomic selection 

could increase the accuracy of fertility EBVs, if sufficient records were taken in the 

initial experiment to estimate chromosome segment effects, allowing greater 

contribution of this trait to the total breeding objective. 

 

In the pig. sheep and poultry industries, a major impact of genomic selection is likely 

to be increased genetic gain for hard to select for traits.  This would include traits like 

disease resistance in poultry and meat quality in pigs. 
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4. Imputation of genotypes in animal breeding 
 

4.1 Introduction 
If we knew the haplotypes individuals carried at every point on the genome, and we 

knew what SNP alleles were contained within with each unique haplotype in the 

population, then we could infer or impute the genotypes an individual carries for any 

SNP locus.   

This would be useful for a number of reasons.    

- Although the SNP array technology is that typically greater than 99.9% of 

all SNP are called per individual, at high quality, this still leaves a 

considerable number of SNP genotypes missing per individual.  For 

example, with 50,000 SNP, this would result in 50 missing genotypes.  For 

larger arrays, the number missing will be even higher.  Missing genotypes 

complicate the implementation of genomic selection and genome wide 

association studies – the X matrix will be incomplete.  Imputation can be 

used to infer these missing genotypes 

- Imputation could be used to recover the high density genotypes for 

animals genotyped with a low density array.  For example, we may be able 

to impute 50K genotypes for an individual from actual genotypes from a 

7K array. 

- Combining data sets.  This particularly useful if one group of individuals 

are genotyped for one panel of SNPs, and another group is genotyped for 

another panel.  Provided there is sufficient overlap between the two panels, 

the full set of SNPs can be imputed into all individuals, and genomic 

prediction or genome wide association studies can proceed, potentially 

with greater power.    

- Imputation could be used to recover genotypes calls for full genome 

sequence data (eg. very dense SNP /insertions and deletions, copy number 

variants, to enable genomic predictions or genome wide association studies 

from this full sequence data. 

- As will be described in the next chapter, there is uncertainty in calling 

genotypes from full sequence data, particularly if the coverage of sequence 
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is low.  For example, if a region of the genome is sequenced at a depth of 

two sequences, it is difficult to determine if the individual is heterozygous 

or homozygous, as both sequences may be derived from the paternal or 

maternal chromosome.   Imputation is used to take advantage of the 

linkage disequilibrium in the population to improve the probability of 

correctly calling genotypes from sequence data.        

 

4.2 How does imputation work   – Hidden Markov Mode ls 
 

As described above, if we knew the haplotypes individuals carried at every point on 

the genome, and we knew what SNP alleles were associated with each unique 

haplotype in the population, then we could infer or impute the genotypes an individual 

carries for any SNP locus. 

In practice of course, we don’t know the true haplotypes that each individual carries.   

Hidden Markov Models (HMM), are a useful approach here.  In a HMM, the hidden 

state, the true haplotypes in the population, generate the observations, which are the 

genotypes.   HMM have been widely used to estimate the probability that an 

individual carries a particular genotype at a particular SNP, given the genotype data 

for that individual at the other SNP and the rest of the population. 

 

Many of the methods for imputation that use HMM also take advantage of a reference 

population, genotyped for all SNPs, that has been previously phased.  These h 

reference haplotypes are designated H.    Then the haplotypes carried by the target 

individuals for imputation (eg. those genotyped at a low density SNP array) are 

considered as a mosaic of the haplotypes in the reference.  “Mosaic” means that the 

target individual must comprise of haplotypes from the reference population, with 

some crossovers between the haplotypes, and some rare mutation.  This is illustrated 

in Figure 1.  Some methods assume this population has been previously phased from 

haplotypes to genotypes, using the PHASE program for example.   
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Figure 1.  From Marchini and Howie (2010).  A cartoon of genotype imputation.  

A.  A phased reference population is the a requirement in many imputation 

programs.  B.  The genotypes in the target population are phased, then assigned 

a mosaic of the reference haplotypes via a hidden markov model.   

 

If we consider a chromosome with L loci, then the five components of a Hidden 

Markov Models are  

- hidden states (S).  In this case these are indicator variables assigning the 

alleles at the reference haplotypes to target individuals.  There are one 1 to 

L indicator variables, and each indicator variable comprises two numbers, 

one for the paternal and one for the maternal chromosome.  For example, 

in the Figure above, the value of S1 for target individual one would be 1,2.   

- observed values.  In this case these are the genotypes G, of which some 

may be missing. 

- state transition probabilities.  This is a h x h matrix, describing the 

probability of moving from one haplotype to another (for example through 

recombination or mutation).  

- emission probabilities.   In the HMM, the underlying state (haplotypes) are 

said to “emit” the observations, the genotypes.  So the emission 
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probabilities are the probability of observing the genotype carried by an 

individual for a particular underlying hidden state.  For example, if the 

genotype at a particular locus was AT, and the underlying hidden state was  

AACG, with the bold allele the allele at the current SNP, the emission 

probability would be 1 (assuming no genotyping error).     

- Initial state probabilities.  This is the probability the HMM starts in a 

particular state, eg at a particular haplotype.       

The methods for imputation differ in their assumptions about the hidden states, the 

way state transition probabilities are derived, emission probabilities, and initial state 

probabilities.   

 

The major strategies for imputation described in the literature will be reviewed briefly 

here.  Much of the material is from two reviews; one in Nature Reviews Genetics  

(Marchini and Howie 2010), and another in Human Genetics (2008).  Both reviews 

are suggested further reading.   

 

IMPUTE1.0 uses a reference population as described above (eg a set of phased 

haplotypes), and parameters describing the recombination rate to estimate the 

probability of genotypes.   

The probability of the genotypes for an individual Gi to be imputed, given the 

reference haplotypes H, is then  

 

Where ρ is the recombination rate map across the genome, θ is a mutation parameter 

that (rarely) allows the genotype vector for individual i to differ through mutation 

from the reference haplotypes that they are derived from, and S is the hidden states 

(haplotypes).  S can also be thought of as a design matrix which “copies” the selected 

reference haplotypes to the target genotypes.  For example, if there are 5 loci, and 

individual i is a mosaic of haplotypes from the reference 1 and 2, with a crossover 

between the third and fourth loci, then S would be  

11100 

00011 
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The probability is calculated by integrating over all possible states the probability of 

the observed genotypes given the states and the mutation rate, and the transition 

between states P(S|H,ρ).  This term is the probability of the States given the reference 

haplotypes and the recombination rate.   

 

The recombination rate map must be supplied to IMPUTE1.0.  A forward-backward 

algorithm for HMM is used to estimate the probability distributions (Rabiner et al. 

1989).   

 

IMPUTE2.0 is a modification of IMPUTE1.0.  This method first estimates the phase 

of SNP in the target population, then compares these phased haplotypes to those in the 

reference population to impute the missing alleles.   As this algorithm uses haploid 

imputation (eg haplotypes in the target are compared to the haplotypes of the 

reference, rather than comparing genotypes), the authors of this method (Howie et al. 

2009) demonstrate that this leads to much faster imputation.   

 

FastPHASE.  FastPHASE (Scheet and Stephens2009), is an modification of the 

PHASE program already discussed.  The hidden states in the model are clusters of 

haplotypes rather than the haplotypes themselves.  For example, a cluster may be a 

group of haplotypes that are almost identical, with the exception of a (rare) single 

mutation.  Clustering very similar haplotypes greatly reduces the number of hidden 

states that must be considered, which decreases computation time.  The default setting 

for the number of clusters at a given genomic location in fastPHASE is 20.     

The probability haplotype I for the current individual comes from the kth cluster is 

weighted according to how many haplotypes of type k have been observed: 

 

Where α is a vector of the proportion of times each of the haplotype clusters is occurs, 

eg. The weight for the kth haplotype cluster may be 0.2.  In this case θ is the 

frequency of alleles within each cluster.  The transition probabilities, the probability 

of switching between a cluster for an individual, is the term P(Zi,α,r). r is a 

combination of recombination rates and mutation rates, both of which are estimated in 

the fastPHASE program.         
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The likelihood of genotype Gi is then 

   

 

An Expectation-Maximisation algorithm is used to fit the model, and compute 

genotype probabilities.   

 

MACH  (Li et al. 2010).     MACH has some similarities with FastPHASE, however it 

uses the full set of haplotypes as hidden states rather than haplotype clusters.  During 

each EM iteration of the model fitting, the current estimates of haplotype phase, 

except for the individual being fitted, are used as the reference haplotypes.  

Individuals are removed from the set of reference haplotypes one at a time and are 

updated, with the updated pair of haplotypes for the individual is sampled from the 

posterior probability distribution, based on the current reference haplotypes: 

 

where D–i is the set of estimated haplotypes of all individuals except i, S denotes the 

hidden states of the HMM, η is an ‘error’ parameter that controls how similar Gi is to 

the copied haplotypes (to account for genotyping error) and θ is a ‘crossover’ 

parameter that controls transitions between the hidden states.  The parameters η and θ 

are during each iteration (eg estimated from the data) based on counts of the number 

and location of the change points in the hidden states S and counts of the concordance 

between the observed genotypes to those implied by the sampled hidden states.  

Imputation of unobserved genotypes using a reference panel of haplotypes, H, is 

naturally accommodated in this method by adding H to the set of estimated 

haplotypes D–I  (Marchini and Howie 2010). 

 

BEAGLE  (Browning and Browning 2008).  BEAGLE uses a different approach to 

define the hidden states to the methods defined above.  Local clustering of haplotypes 
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is used- that is, for a given genomic location, the possible hidden states are reduced to 

those that are observed in the reference.  This is in contrast to IMPUTE and MACH, 

where at any position the number of states is the number of reference haplotypes 

squared.  So the number of hidden states in BEAGLE varies with location.  In 

addition, a haplotype cluster can only emit a single allele (eg A or T) – haplotypes 

carrying different alleles are assigned to different clusters, and there is 0 probability of 

genotyping error assumed.  The idea behind these conditions is to reduce 

computation.  A final difference is that many haplotype configurations are assigned a 

probability of zero by the Browning model.  This allows the model to be more 

parsimonious (eg better fit to the data), but means that the haplotype model must be 

constructed from all sampled individuals, rather than from a subset acting as a 

reference panel.  Otherwise if a new haplotype is encountered in the target 

individuals, there may be no haplotype configuration in the model that is consistent 

with the individual's genotype.  Some of the differences between BEAGLE and 

MACH/IMPUTE and fastPHASE are summarized in Figure 2 (from Browning 2008).   

 

One key difference between BEAGLE and MACH/IMPUTE/fastPHASE is that no 

use is made in BEAGLE of population parameters recombination rates or mutation 

rates.  When the reference population is small, this is a disadvantage for BEAGLE, as 

the only information is from the data in the current genomic location, while 

MACH/IMPUTE/fastPHASE can gain accuracy from the additional information on 

the population and genome wide parameters such recombination rates and mutation 

rates.   However when the data set is large, estimating these parameters can incur 

additional computational cost, and using the parameters when they are inaccurate may 

actually decrease the accuracy of imputation. 
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Figure 2.  Illustration highlighting major differen ces between models based on the Li and 

Stephens framework (2003), the basis for MACH, IMPUTE and fastPHASE, and the Browning 

model (Browning 2006), the basis for BEAGLE. Excerpts of the models covering three markers 

(SNPs i-1, i and i+1) are shown. Ovals are hidden states of the models. For the Li and Stephens 

framework, these states are defined by the reference haplotypes, while for the Browning model 

the states are localized clusters of haplotypes. Note that the graphical representation of the 

Browning model is that given in Browning (2008), while earlier representations had states as 

edges rather than as nodes of the graph. The Browning model will tend to have fewer states at 

any given marker than will unconstrained models based on the Li and Stephens framework, and 

the number of states can vary from marker to marker for the Browning model but is fixed in the 

Li and Stephens framework. Arrows between states from one SNP to the next are transitions of 

the HMM. For the Li and Stephens framework, transitions with highest prior probability (those 

seen in the reference haplotypes) are shown with bold arrows, while thin arrows allow for 

historical recombination. For the Browning model, there are at most k transitions coming out of 

a state, where k is the number of alleles at the next marker (i.e. 2 for SNPs), which helps to keep 

the model parsimonious. Arrows coming out of the top of the states are possible emissions of the 

HMM, which are the observed alleles. For the Li and Stephens framework, emissions with 

highest prior probability (the alleles on the reference haplotypes) are shown with bold arrows, 

while thin arrows represent mutations to other alleles. The reference haplotypes here are 011, 

010, 101 and 001. For the Browning model, there is only one possible emission from each state, 

which helps to keep the model parsimonious. The models shown are illustrative only. The actual 

form of the Browning model will vary depending on the alleles of the reference haplotypes 

outside this window of markers.. 
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A good example is given in Browning and Browning (2009).  They compared the 

performance of IMPUTE1.0 and BEAGLE, in the Wellcome Trust Case Control 

Consortium (WTCCC) data, which includes approximately 2000 cases for each of 

seven diseases (bipolar disorder, coronary artery disease, Crohn’s  disease, 

hypertension, rheumatoid arthritis, type 1 diabetes, and type 2 diabetes) and 

approximately 3000 shared controls.  The comparison used data from chromosome 1 

with 53,683 markers genotyped A subset of 24,705 markers was masked and imputed 

with either BEAGLE or IMPUT1.0 in 188 individuals, using a reference panel of 600, 

300 or 60 individuals with full genotypes.  The authors found that while IMPUTE1.0 

was more accurate with smaller reference set sizes, BEAGLE was more accurate 

when the reference size was bigger.  The allele-frequency correlations were 0.990 

(BEAGLE) and 0.992 (IMPUTE) with a reference panel of 60 individuals, 0.997 

(BEAGLE) and 0.998 (IMPUTE) with a reference panel of 300 individuals, and 0.998 

(BEAGLE) and 0.998 (IMPUTE) with a reference panel of 600 individuals.  The 

authors concluded that the difference in accuracy between IMPUTE and BEAGLE is 

substantially smaller than the gain in accuracy obtained from using larger reference 

panels.   

 

4.3 Including information from pedigree to improve the 
accuracy of imputation 
 

There is additional information for phasing, and therefore imputation, if the pedigree 

amongst the individuals in the target and reference populations are known.  For 

example, if a sire has large number of offspring, his genotypes can be phase into 

haplotypes by simply counting the alleles across the markers that occur together 

(allelic co-segregation).  Trios, which consist of father, mother and offspring, and 

sometimes used in human genetics for the same purpose.  When this information is 

known, the number of hidden states that must be considered can be reduced to four, 

corresponding to the paternal and maternal alleles of both the mother and father.      

Druet and Georges (2010) extended both BEAGLE and fastPHASE to take advantage 

of pedigree structures more typical of livestock and crop populations, for example 

large half sib or full sib families.  In their approach, sires with six or more offspring or 

individuals with five or more sibs were phased using alleleic co-segregation and 
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linkage approach.  Then these “known” haplotypes were used in 1) fastPHASE, to 

estimate the parameters of the EM algorithm or 2) BEAGLE, to generate the directed 

acyclic graph (DAG) describing the hidden states, transition and emission 

probabilities.  Either BEAGLE or fastPHASE are then run.  In dairy cattle, recent 

results suggest that using the pedigree information in this way, prior to running 

BEAGLE, can improve the accuracy of imputation (Druet pers com).                

 

4.4 An alternative approach to phasing and imputati on: Long 
range phasing 
 

An alternative approach to phasing and imputation is to exploit the fact that some 

individuals share a recent common ancestor, and therefore share long chromosome 

segments which are identical by descent.  This is particularly true of livestock 

populations, where some sires have very large number of descendants.  As described 

by Kong et al (2008), this leads to a phasing approach based on the key observation 

that if animals have non-conflicting homozygote genotypes over a long string of 

consecutive loci, they have at least one long haplotype in common.   This 

requirement, of a long string of loci, leads to a high probability that the common long 

haplotype has originated in a common ancestor (eg is identical by descent as well as 

identical by state).   The method proceeds by considering one individual at a time, and 

identify either real or “surrogate” parents (if the real parents are unknown).  As 

describe by Kon et al. (2008) and Hickey et al. (2011), surrogate parents are 

individuals who share a haplotype with the individual being considered, identified as 

those individuals that do not have any opposing homozygote genotypes with the 

current individual.  Inference of the phase at each locus for the current individual 

within the paternal/maternal haplotype is attempted by stepping through the 

paternal/maternal surrogates until a surrogate is found that is homozygous at that 

locus and thus can be used to declare the phase.  If the surrogates that are one degree 

removed from the current individual cannot be used to declare phase, eg they are 

heterozygous, surrogates of the surrogates are collected, and so on, until a 

homozygote is found, Figure 3.  Hickey et al. (2011) demonstrated that using a 

modified long range phasing algorithm in livestock populations led to extremely 

accurate phasing, in reasonable computing time.  This is likely because livestock 
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populations have relatively small Ne, so large segments of chromosome are shared 

between individuals.     

   

 

Figure 3.  From Hickey et al. (2011).  Illustration of the long range phasing 

process.    

 

As demonstrated by Daetwyler et al. (2011), and Hickey (pers com) the principle of 

comparing long stretches of chromosomes between individuals to identify common 

segments can also be used to impute and phase missing genotypes.  They 

demonstrated this approach gave more accurate imputation results than fastPHASE in 

a dairy cattle population, in a fraction of the computing time.3.   
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4.5 Results of imputation in livestock populations.  
 

In dairy cattle, accurate imputation from low density markers to 50K SNPs has been 

described by a number of authors.  Weigel et al. (2010) evaluated the accuracy of 

imputing up to 43,385 SNP in Jersey cattle, when in 1, 2, 5, 10, 20, 40, or 80% of 

these loci were genotyped in a target population.  Both IMPUTE2.0 and fastPHASE 

were used for imputation.  They found the accuracy of imputation was low (<0.80) 

when fewer than 1,000 SNP are used, but when 4,000 SNP were used the accuracy of 

imputation was 0.95.  In a follow up paper, Weigel et al (2011) assessed the effect of 

imputation on the accuracy of genomic estimated breeding values (GEBV).  They 

concluded that provided the target population was genotyped for at least 3000SNP, 

with imputation to 43,000 SNP, GEBV were predicted with an accuracy of 95% of 

what was possible with the real 43,000 SNP.  They also demonstrated that using the 

imputed genotypes resulted in GEBV that were approximately 5% more accurate than 

using the 3000 SNP alone, without imputation.        

 

Similar results for the accuracy of imputing 3,000 SNP to approximately 50,000 SNP 

have been found in Holstein-Friesian dairy cattle.  Zhang and Druet (2010) reported 

error rates of 3-4% in this situation using DAGPHASE (Druet and Georges 2009), 

though their main conclusion was that the accuracy of imputation was dependent on 

the genetic relationship between the target individual and the reference population 

(discussed below).   Dassonneville et al. (2011) using the same method observed 

similar error rates when imputing 3K to 50K in European Holstein cattle, and went on 

to demonstrate that the loss in accuracy of GEBV using the imputed genotypes rather 

than 50K genotypes was only 0.02.  Daetwyler et al. (2011) reported slightly higher 

error rates with their implementation of the long range phasing algorithm, although 

the used as smaller reference population, and the algorithm outperformed fastPHASE.  

Using BEAGLE in the same population gave error rates of 5%.             

 

Another interesting potential application of imputation was demonstrated by Druet et 

al. (2010), where two populations, each genotyped for separate panels of 
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approximately 28,000 SNP, and overlapping by approximately 9,000 SNP were 

imputed up to 60,000 SNP with very low error rates (note that in this study all animals 

were actually genotyped with 60,000SNP, but the results do demonstrate the 

possibility of meta-analysis of populations genotyped with different SNP panels.     

 

In pig and chicken breeding, moderate sized full sib families are the norm.  In such 

populations, another imputation strategy is possible, whereby parents are genotyped 

for a dense (say 50K) marker panel, and the offspring are genotyped with a very low 

density marker panel (say 384 SNP), as outline by Habier et al. (2009)  Given the 

limited number of recombinations that occur between parents and offspring, this very 

limited number of markers is sufficient to determine whether progeny have inherited 

maternal or paternal chromosomes from each parent.  The rest of the markers can then 

be “imputed” if the haplotypes of the parents are known.  Habier et al. (2010) 

demonstrated this very low cost strategy could result in prediction of genomic 

breeding values with accuracies nearly as high as if the progeny had been genotyped 

for the full 50K SNP.  This strategy is now being used in pig and chicken breeding 

programs (Dekkers, pers com).   

 

In sheep, few results have been published.  Hayes et al. (2011) reported fairly low 

accuracies of imputation in three sheep breeds, albeit with very small reference 

populations (80 to 200).  Accuracies of imputing 48,000 SNP from 5,000 SNP was 

80% for Poll Dorsets, White Suffolks and Border Leicesters.  For Merino sheep, even 

though a much larger reference set was used, the accuracy of imputation was only 

71%, likely due to the very large effective population size for this breed (see below). 

While imputation is likely to be an important strategy in crop species, no results have 

been published to date.   

    

4.6 Factors affecting accuracy of imputation 
 

4.6.1 Size of the reference population.   
It is critical that the reference population is large enough to capture all the haplotypes 

in the population.  If a target haplotype is encountered which has not been previously 

observed in the reference population, the imputation of missing genotypes is unlikely 



 78 

to be accurate.  The size of the reference is also important for other consideration – in 

fastPHASE for example, haplotype (actually cluster) frequencies are used in the 

model, and these will be inaccurately estimated with a low number of markers.  In 

BEAGLE, the accuracy of imputation is very dependent on the size of the reference 

population as this determines how well the directed acyclic graph (DAG) describes 

the population.  If the reference is too small, there may be haplotypes in the target 

which are not represented in the reference, so the alleles on these haplotypes will be 

poorly imputed.  Browning and Browning (2009) demonstrated that increasing the 

size of the reference had a large impact on the accuracy of imputation, as was larger 

than the differences between methods.   

      

4.6.2 Density of markers and effective population size.   
 
If the markers are not sufficiently dense that there is substantial linkage 

disequilibrium between them, the methods using population level algorithms (eg 

MACH, BEAGLE, IMPUTE2.0, fastPHASE), will perform very poorly.   This is 

because haplotypes encountered in the reference and haplotypes encountered in the 

target population, although they have a limited number of alleles in common, could be 

identical by chance rather than identical by chance, so the identity of the missing 

marker alleles in the target does not match those in the full genotyped animals.  In 

dairy cattle population, linkage disequilibrium is sufficiently high (due to the low 

effective population size) that 3K SNP can be used to impute 50K with low error 

rates, provided the reference population is sufficiently large.  However in a number of 

sheep breeds, the same number of markers cannot be successfully used for imputation 

using population based methods, as the level of linkage disequilibrium is too low, a 

result of higher effective population size than in dairy cattle (eg. Hayes et al. 2011).   

Even if the marker density is too low for successful imputation using the population 

algorithms, within family linkage can still be exploited in some situations to obtain 

accurate imputations (eg. Habier et al. 2009).  

 

4.5.3 Genetic distance from the reference population.   
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Particularly when imputing from low marker densities (eg 3K to 50K), the accuracy 

of imputation is likely to be highly dependent on the genetic distance of the target 

individual from the reference population (eg Zhang and Druet 2010).  If for example 

the individual has a sire in the reference, his or her 3K marker haplotypes will be 

readily identifiable among the 50K haplotypes.  However if the individual does not 

have a sire, or a more distant relative in the reference, the chance his or her 3K 

haplotype has previously been observed (without intervening recombination) 

diminishes rapidly.  In a sheep population, Hayes et al. (2011) demonstrated that 64% 

of the variation in accuracy of imputation among target individuals was accounted for 

by average genetic relationship to the reference.        

 

Allele frequency.  Another reason for using a large reference population is to ensure 

rare alleles are captured, and can be accurately imputed into the target individuals.  

For rare alleles, the probability of imputing the correct genotype by chance is high, as 

the majority of the individuals will be homzogygous for the common allele.  However 

if the accuracy of imputation is corrected for the homzygosity of the markers, it is 

clear that the accuracy of imputation is actually lower for rare alleles, Figure 4.  

Another way of interpreting this is to think of the consequences for GWAS 

association study.  If an allele is rare, the number of phenotype observations on that 

allele is low.  If a significant proportion of these are actually incorrect due to the 

imputation, the already limited power will be greatly reduced.  
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Figure 4.   From Hayes et al. (2011).  Proportion of maximum possible 

imputation accuracy that was achieved (50K to high density genotypes) by minor 

allele frequency, in a terminal sire sheep breed.  The proportion of maximum 

possible imputation accuracy was calculated as the accuracy of imputation that 

was achieved minus the accuracy of imputation that would be achieved by 

chance, that is random sampling of genotypes conditional on genotype 

frequencies for each marker divided by one minus the accuracy of imputation 

that would be achieved by chance.  

 

4.6.4 Why does imputation lead to more statistical power? 
 

An obvious question is, if there is already enough information in haplotypes of low 

density markers to accurately impute up to higher density markers, why would the 

imputed genotypes add any power to genome wide association studies or increase the 

accuracy of genomic estimated breeding values?  One explanation is that while testing 

the haplotypes themselves would require a factor with multiple levels, with degrees of 

freedom lost corresponding to the number of haplotypes-1, testing a SNP with two 

alleles leads to the loss of only one degree of freedom.   
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Further, if the GWAS is done across breeds, the marker density may be such that 

imputation is from the sparse markers is only possible within breeds (eg the 

haplotypes only persist within breeds), this can lead to the same SNP allele being 

imputed across breeds, such that an across breed test can be carried out.    
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5. Genome sequencing for genomic selection and 
Genome wide association studies 

 

This short chapter suggests some potential advantages of using whole genome 

sequence in genome wide association studies and genomic selection.  As there are 

very papers or results with full genome sequence data, the suggestions here should be 

considered hypothesis for testing, rather than results based on evidence.  This area is 

unfolding very rapidly, so some of the ideas proposed below may well be out of date 

shortly after the time of writing (2011)!   

 

5.1 Motivation 
 

If all the individuals in a population could be sequenced, all the genomic variants in 

the population would be captured.  This includes SNPs, small insertions and deletions, 

and copy number variants (CNVs).  Why would this benefit genome wide association 

studies and genomic selection? 

 

For genome wide association studies, the advantage is obvious.  If full sequence data 

is used rather than a panel of SNP markers, then the actual mutation affecting the trait 

will be present in the data.  So potentially, the GWAS could lead to direct 

identification of the causal variant.  In practise, there may be other variants in 

complete LD with the causal variant, so that functional information has to be used to 

refine the candidates.           

 

For genomic selection, the advantage of using full genome sequence data is less 

obvious.  If genomic predictions are already based on a large number of SNP in high 

LD with QTL, using full genome sequence may not add much to accuracy and may 

with some methods in fact decrease accuracy, given the very large increase in the 

number of effects that need to be estimated from perhaps the same number of 

phenotypic records.  However, the sequence data could increase the accuracy of 

genomic predictions in a number of situations 

1) If LD between the QTL and SNP is incomplete.  In this situation, the full QTL 

effect is captured only by the sequence data and not by the SNP data (as the 
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actual causative mutation is now in the data set).  This is especially likely if 

some of the QTL alleles are very rare, while the majority of the SNP alleles on 

the widely used arrays have quite high minor allele frequencies.  Meuwissen 

and Goddard (2010), using simulation, demonstrated a 5% increase in 

accuracy from using full sequence data over the densest SNP panel they 

simulated 

2) If genomic predictions are made across breeds.  In multi-breed populations, 

using full sequence data is likely to be particularly advantageous, as there is no 

longer the need to rely on SNP-QTL associations which may not persist across 

breeds. 

3) Persistence of accuracy of genomic predictions.  With current marker 

densities, for example the 50K SNP array in cattle, the accuracy of genomic 

predictions decays surprisingly rapidly with either generations removed from 

the reference set, or genetic distance from the reference set (Habier et al. 

2009).  This is because, with SNPs spaced every ~ 60kb, the SNP-QTL 

associations break down quite quickly.  With full sequence, the QTL  

themselves should underlie the prediction equation, so that the decay in 

accuracy is greatly reduced.  In their simulations, Meuwissen and Goddard 

(2010) demonstrated there was very little decay in accuracy over generations 

when full genome sequence was used.  This is particularly important for 

expensive to measure traits, like feed conversion efficiency and methane 

emissions, where the cost of updating the prediction equation could be 

prohibitive.                 

 

5.2 Which individuals to sequence? 
 

As sequencing is still expensive compared to the cost of genotyping (though this cost 

has declined more than one million fold in ten years, as is likely to keep declining), it 

is unlikely, at the time of writing at least, that the entire reference population will be 

sequenced.  Rather, a likely strategy is that a few hundred or few thousand individuals 

will be sequenced, and imputation used to impute the variants in the sequence 

(including SNP, indels and CNV) into the full reference population (eg Meuwissen 

and Goddard 2010, 1000 Genomes consortium 2011).  One obvious way to choose the 
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individuals then is to choose those that will maximise the accuracy of imputation, or 

equivalently, capture the highest proportion of genetic variation in the target 

population.  This leads to sequencing of key ancestors.  To choose amonst the 

possible ancestors, the following algorithm could be used (Hayes and Goddard 2007).   

 

Let the number of potential key ancestors be n and let A be an nxn matrix which is the 

additive relationship matrix among the n animals in the whole population. Let c be an 

nx1 vector with the n animals ordered in the same way as in A, and ci = the average 

relationship between animal i and the whole population. Consider a sub matrix of A 

(Am) containing the relationship between a subset m of the animals, to be sequenced, 

and let cm be the equivalent sub vector of c. Then p=Am
-1cm is a vector whose i th 

element is the proportion of the genes in the whole population that derive only from 

animal i amongst the m key ancestors and p’1 is the total of the elements of p and is 

the proportion of genes in the whole population that derive from the m key ancestors 

(where 1 is a vector of 1s). Therefore to select the m ancestors that capture the most 

genetic variation in the population find the subset that maximise p’1. This can be 

done either by stepwise regression, which can be done by finding the single individual 

with the largest value of p, choosing the next individual by setting the individual with 

the previous highest contribution to 0 in cm, recalculating p, and so on.  A genetic 

algorithm can also be used.   

 

An example of the use of this algorithm applied to real data is given in Figure 1 for 

the Poll Dorset Sheep breed.  Sequencing 50 key ancestors would capture 35% of the 

genetic variation in this breed.   
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Figure 1.  Proportion of genetic diversity (as measured by pedigree), captured by 

subsets of groups of rams, ranked from the most to least influential. 

 

5.3 Imputation of full sequence data 
 

Once a subset of individuals, perhaps the key ancestors, are sequenced, the next task 

is to impute the variants that occur in the sequence into the reference population for 

GWAS or genomic selection.   

 

The first step is to sequence a reasonable number of individual, then variants are 

identified between the individuals and between the two chromosomes (paternal and 

maternal) of the individuals, followed by calling of genotypes in the each sequenced 

individual.  To identify variants and call genotypes, the properties of the sequence 

data must be taken into account.  While it is beyond the scope of this chapter to fully 

describe these and algorithms that have been used for this purpose, the properties of 

the sequence data that must be dealt with are variable coverage of each base in the 

genome, and variable quality of the sequence data.  The variable coverage arises 

because of the process used to sequence genomes, which is to shatter each genome 

into small pieces (perhaps 150bp long), sequence these, and then align the reads to a 

reference genome (a genome that has been assembled previously).  The probability 

that each small piece of genome is sequenced is random, and many genome locations 
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are sequenced multiple times.  When the reads are aligned to a reference genome, this 

results in a depth of coverage (the number of times each base is sequenced) which is 

approximately poisson distributed, with mean the mean coverage set by the laboratory 

(“the depth of sequencing”).  For example, if the average fold coverage is 4, then 

1.8% of the genome will not be covered at all (eg. P(0) =  40e-4/0!).  One of the major 

challenges for calling variants, and genotypes, is that for truly heterozygous sites, the 

probability that both alleles are observed in the sequence data is low at low fold 

coverage.  A further challenge is the high rate of sequence errors, these occur 

approximately one every hundred base pairs with the Illumina technology at least.  

Algorithms have been devised to take both sources of error into account when calling 

genotypes from the sequence data.  The best algorithms give probabilities of each 

genotype (for example AA,AT and TT) at a putative variant for each individual, 

rather than an absoloute genotype call.  These probabilities take into account the depth 

of sequence reads, the quality of the reads at that location.  A recent paper (Danecek 

et al. 2011) describes software implementing such an algorithm.  The 1000 Genomes 

paper (1000 Genome consortium 2011, supplementary reading is also recommended 

reading here.   

 

Population level information can also be used to increase the accuracy of calling 

genotypes from the sequence data.  Both MACH and BEAGLE, described in the 

Chapter 4.0, have been modified to take in genotype probabilities calculated from 

sequence data, run imputation and therefore exploit population level information to 

improve the accuracy of genotype calls.  Again, both these approaches are well 

described in the 1000 Genomes consortium paper (2011), Supplementary methods.                          

 

Once the genotypes have been called in the sequence individuals, they can be used as 

a reference population for imputing the variants in the sequence into the group of 

animals with 50K or 800K genotypes.  This can be done using any of the imputation 

programs, provided they are computationally efficient, as the number of variants is 

likely to be very large!  Note that it may be worthwhile to use genotype probabilities 

here rather than absolute genotypes, to account for any uncertainty in imputation. 
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5.4 Methods for genomic prediction with full sequen ce data 
 

Once the variants in the sequence data have been imputed into the animals with SNP 

array genotypes and phenotypes, a prediction equation can be derived.  The question 

is which genomic prediction method is appropriate for this data?  At the time of 

writing, this question had not been answered in real data, so what follows is 

speculation.  If we assume that quantitative traits are controlled by perhaps a few 

thousand loci, then we would like our genomic prediction method to attribute effects 

to these 1000s of loci, and set the rest of the effects of the variants (which may be in 

LD with the causative mutations, but are not the causative mutations themselves, to 

zero.  In this case, a BLUP method, which assumes the effect of all variants is small, 

non zero, and normally distributed, is inappropriate.  A method such as BayesB, or 

BayesCpi, which allow for a large number of variant effects to be set to zero, would 

seem to be a much more appropriate method. 

 

In their simulation of a population with sequence data, with a tens of QTL, and very 

large number SNP, Meuwissen and Goddard (2010) demonstrated very considerable 

advantage in the accuracy of GEBV for BayesB over BLUP (up to 40%).  However it 

must again be pointed out that this is simulated data, and the methods need to be 

tested in real data set. 

 

5.5 An example of using full sequence data.  A geno me wide 
association study in Rice.    

 

An elegant example of the power of a genome wide association study with full 

sequence data was provided by Huang et al. (2010) “Genome wide association studies 

of 14 agronomic traits in rice landraces”.  A key advantage they had was they were 

using inbred lines, so there were no heterozygous genotypes for any variant in the 

data, so very low coverage sequencing could be used.  They sequenced 517 rice 

landraces (inbred lines!) at only 1x coverage.  These lines represented ~ 82% of 

diversity in the world’s rice cultivars.  Each line was well characterised for 14 

agronomic traits including grain yield and growth rates.  The sequence from each line 

was stacked, or piled up, for the calling of sequencing variants.  3.6 million SNP were 
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detected in these pileups.  However, with 1x coverage, they could only call genotypes 

at ~ 20% of the SNP for each landrace.  So imputation was used to fill in the missing 

genotype.  Then GWAS were performed for each of the traits using the 3.6 million 

imputed genotypes in the 517 lines.  The authors demonstrated that they found already 

known mutations with effects on some of these traits, place a host of new mutations 

with very significant effects for future investigation.   
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6.  Practical Exercises 
 

6.1  Haplotyping with the PHASE program 
The above exercise assumes that the genotypes of each animal have already been 
sorted into haplotypes.  In a real data set, this will not be the case.  If the population 
has large half sib family structure, resolving the genotypes is relatively 
straightforward.  In some situations pedigree information may no be available, or you 
may deliberately choose to randomly sample animals from the population for LD 
mapping.  With this type of data it is possible to use the PHASE program (Stephens et 
al 2001).  The program is available for free download at 
http://www.stat.washington.edu/stephens/software.html.  Note that the program is 
only designed to resolve short range haplotypes, eg many markers in a single cM. 
 
Exercise 3.2.1.  Haplotyping with the PHASE program. 
The casein genes in goats are good candidates for harbouring a mutation affecting 
milk production, as casein constitutes around 80% of caprine milk protein.  You have 
found 10 SNPs in the goat casein genes, and want to sort the genotypes into 
haplotypes for LD analysis.  205 goats have been genotyped for the 10 SNPs. 
 
The PHASE input file (goat_geno.txt) has the following format: 
 
205           
10           
P 264 866 888 1105 1169 1379 1470 6075 6091 9889 
SSSSSSSSSS           
38362           
 A C G G G C G T C C 
 A C G G G C G T C C 
38393           
 A C G G G T G ? ? T 
 A C A A A C A ? ? C 
38421           
 A C G ? G T G ? G T 
 A C A ? A C A ? C C 
38452           
 ? C G G G T G T ? C 
 ? C A A A C A C ? C     
 
Where the first line is the number of animals in the analysis, the second line is the 
number of SNPs, the third line is the position of the SNPs (begin this line with P) in 
bases, the next line is the type of marker for each marker (S=SNP,M=microsatellite).  
Missing alleles are coded as ?. 
 
Then for each animal, there is an ID, followed by the genotypes at each SNP  
 Marker1 allele1, marker2 allele 1 ….. 
 Marker1 allele2, marker2 allele 1…… 
 
To run the phase program, you will need to type the following: 
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PHASE <filename.inp> <filename.out>  <number of iterations> <thinning interval> 
<burn in>. 
 
For the data set goat_geno.txt, 100 iterations with thinning interval 2 and burn in 10 
iterations should be sufficient. 
 
Run the PHASE program.  Go to output file.  How many unique haplotypes are there?  
Do they have the same frequency in the population?. 
 
The PHASE program usually predicts a number of haplotypes with very low 
frequency.  What we want to now if the probability that these haplotypes really exist.  
So, take one of the rare haplotypes from the *.out file.  Then, in the *.pairs file, you 
can see the probability for each animal of carrying a certain haplotype configuration.  
Are you satisfied that your rare haplotype really exists?  
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6.2 Estimating the extent of linkage disequilibrium    
The GOLD program (for Graphical Overview of Linkage Disequilibrium) calculates 
linkage disequilibrium statistics from haplotype data ((Abecasis and Cookson, 2000).   
The statistics calculated are D, r2 (which the authors call delta) and D’.  The program 
also gives a nice graphical picture of the extent of linkage disequilibrium.  The  
program is freely available from http://www.sph.umich.edu/csg/abecasis/GOLD/. 
 
We will use the haploxt program from GOLD to calculate the extent of linkage 
disequilibrium between pairs of SNPs in practical 5.1.  The inputs to the program are 
marker haplotypes (eg output from the phase program) and a map of the markers.   
 
The file map.gm should look like (the header must be included): 
 
MARKERID   NAME      LOCATION 
       1   SNP1  266 
       2   SNP2  864 
       3   SNP3  888 
………. 
 

You can create this file from the positions line in the file goat_geno.txt 
 
Next you will need to create a file with a list of haplotypes, called HAPLO.LST.   
 
The format of this file is: 
 
  HAPLO_1   1 1 1 2 1 2 1 
  HAPLO_2   1 2 2 1 2 1 2 
  HAPLO_3   2 1 1 2 1 0 0 

 
Eg. one line for each haplotype.  You can create this file from the list of best pairs 
from PHASE, using excel for example.  Note that in PHASE, we have used A,C,T 
and G to code the SNP alleles.  These must be replaced with 1,2,3 and 4 in the *.lst 
file.  Save your file to a location on your c: drive.  If you used excel to create the file, 
save it as a text file, and then remove the .txt extension.     
 
Open a DOS window, and go to the directory containing the *.lst file.  Run the 
program haploxt in this directory by typing haploxt.    
 
The program will produce a file called LD.XT.  This a table of LD values for each 
marker pair.  Open this file.  Plot the values D’ and r2 against each other in excel.  Is 
the value of D’ usually larger or smaller than r2?   
 
Now open the gold program (click on the gold icon).  Load the disequilibrium data 
(the file you have just produced, LD.XT).  The load the map file (map.gm).  View the 
LD across the segment with the delta squared statistic.  Are there any regions of very 
high LD?  Why do you think this is?  In general, what is the relationship between 
distance between the SNPs and LD?  Are there any exceptions to this across the 
chromosome segment? 
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Another useful program in the GOLD package is ldmax.  This program estimates r2 
values from genotypes.  So there is no need to haplotype the data first.  The “cost” of 
using this program could be less accurate estimates of r2 values.  To investigate the 
effect of using genotype data to estimate r2, we will use the genotype data from 
practical 5.1        The data format for ldmax is   
 
<famid> <pid> <fatid> <motid> <sex> <genotype_1> .. . <genotype_n> 

<famid> is a unique identifier for each family, and within each family <pid> is a 
unique identifier for an individual. <fatid> and <motid> identify the individuals 
father and mother (if this line refers to a founder, these should be set to zero). <sex> 
denotes the individuals sex, using the convention 1=male, 2=female. Each 
<genotype> is encoded as two integer allele numbers. The pedigree columns should 
be separated by spaces. 

An example pedigree file fragment, describing a single nuclear family genotyped at 3 
markers would be: 

100 1 0 0 1  1 2  1 2  1 2 
100 2 0 0 2  1 2  1 2  1 2 
100 3 1 2 1  1 1  2 2  1 1 

This describes a family (labelled 100), contains two founders (1 and 2), and their 
single offspring (3). The founders are heterozygous at all marker loci, while the 
offspring is homozygous at all loci. 

In the case of the goat genotype data, we will assume all animals are founders.  The 
input file for ldmax, qtdt.ped has already been made for you.  First rename your 
LD.XT file so you don’t lose it.  Then run the ldmax program, which also produces 
the file LD.XT.  Now plot the delta^2 values from haploxt and ldmax (using excel 
for example).  How similar are they?  Do you think ldmax is giving reliable estimates 
of r2 in this case?         



 93 

  

6.3 Power of association studies 
As we discussed in section 2, the power of association studies depends on the r2 
between the QTL and the marker we are trying to detect the QTL with, the frequency 
of the rare allele of the marker and the QTL, the number of phenotypic records, and 
the significance level we are testing the association at. 
 
There is a program which calculates the power of an association study given all these 
parameters called ldDesign.  The package is written in the R language.     
By way of background, R is a free software environment for statistical computing and 
graphics. It compiles and runs on a wide variety of UNIX platforms, Windows and 
MacOS.  We will use R in a windows environment.  R provides a wide variety of 
statistical (linear and nonlinear modelling, classical statistical tests, time-series 
analysis, classification, clustering, ...) and graphical techniques.  There are a very 
large number of “packages” available for R, and one of these is the ldDesign pack. 
 
Before we use this design pack, lets take a moment to get acquainted with R.  We will 
use a simple example of multiplication of two matricies to obtain another matrix. 
 
Open the R graphical user interface by clicking on it.  You should see the command 
prompt.   
 
Lets multiply two matricies a and b to get a third matrix c. 
 
The matrix a is a two by two matrix with elements: 
1 1 
2 2  
The matrix b is a two by three matrix with elements: 
1 2 2 
2 3 4 
 
We can input these matricies into the computer memory as: 
>  a   <- matrix(c(1,1,2,2),ncol=2,byrow=TRUE)  
>  b   <- matrix(c(1,2,2,2,3,4),ncol=3,byrow=TRUE) 
 
To check the dimensions of a and be are correct type: 
> dim(a) 
> dim(b) 
 
You can print a matrix at any time, eg   
> print(a) 
    
Now lets multiple matricies a and b to get a new matrix c: 
> c <- a%*%b   (%*% is the symbol for matrix multiplication) 
 
Check the dimensions of c are correct,  
> dim(c) 
And that the c matrix has the correct elements: 
> print(c)   (you can compare this to the result in excel for example) 
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A matrix can be transposed using t(a), eg 
> d <-t(a) 
 
Now we will return to the ldDesign package.  Hit the “packages” button on the top of 
the screen.  Then click load pacjages and click on ldDesign.  If the package does not 
appear, you can install it by typing 
> install.packages("ldDesign") 

Then the package can be loaded.   
 
The documentation for the ldDesign package can be found here: 
(http://bg9.imslab.co.jp/Rhelp/R-2.4.0/src/library/ldDesign.html) 
 
We will use the luo.ld.power function in the ldDesign package.  This function 
performs a classical deterministic power calculation for power to detect linkage 
disequilibrium between a bi-allelic QTL and a bi-allelic marker, at a given 
significance level in a population level association study.  This is based on the 'fixed 
model' power calculation from Luo (1998, Heredity 80, 198–208), with corrections 
described in Ball (2003).  
 
To run the function: 
> luo.ld.power(n, p, q, D, h2, phi, Vp = 100, alpha) 
 
Where: 
-  n   The sample size, i.e. number of individuals genotyped and tested for the 

trait of interest 
-   p Bi-allelic marker allele frequency  
-  q Bi-allelic QTL allele frequency  
- D Linkage disequilibrium coefficient  
- h2 QTL `heritability', i.e. proportion of total or phenotypic variance explained 

by the QTL  
- phi Dominance ratio: phi = 0 denotes purely additive, phi = 1 denotes purely 

dominant allele effects  
- Vp Total or phenotypic variance: and arbitrary value may be used  
- alpha Significance level for hypothesis tests  
 
The function returns the power, or probability of detecting an effect, with the given 
parameters, at the given significance level. 
 
One problem we will have is that the program takes as an input D instead of r2, which 
is more useful to us.  We can run the program at a desired level of r2 between the 

marker and QTL by inputting for the value of  2)1()(1( rqqppD −−=   where p and 

q are defined above.   
 
For example, if we want to evaluate power at a level of r2 of 0.2, with p=q=0.2, we 

would use a value of 072.02.0*)2.01(*2.0*)2.01(*2.0 =−− .  Now say we have 

n= 500 phenotypic records, the QTL explains 2.5% of the phenotypic variance, the 
QTL is purely additive (phi=0), and alpha is 0.05.  Assume of a value of Vp of 100, 



 95 

though the value assumed will not affect the calculations.  Then the power of the 
experiment is: 
 
> luo.ld.power(500, 0.2, 0.2, 0.072, 0.025, 0, 100, 0.05) 
Which should return a value of 0.277. 
 
 
Now run the program with 1000 phenotypic records, 
p=q=0.2,h2=0.025,phi=0,Vp=100 an alpha =0.05 for r2=0.1,0.2,0.3-1.0. 
 
You can either do this by calculating the value of D at each level of r2 and rerunning 
the program, or you can write a small “script” which loops through the values of r2.   
 
You can write such a script in notepad.  The script might look like: 
 
# Script to calculate power at different levels of r2. 
 
# Script to calculate power at different levels of r2. 
n <- 1000 
p_val <- 0.2 
q_val <- 0.2 
h2 <- 0.025 
phi <- 0 
Vp <- 100 
alpha <- 0.05 
for (i in 1:10) { 
 r2 <- i/10 
 D <- sqrt(p_val*(1-p_val)*q_val*(1-q_val)*r2) 
 luo.ld.power(n, p_val, q_val, D, h2, phi, Vp, alph a) 
} 

 
 
Save your script with a *.R extension, eg power.R.  To open the script, click the file 
tab and select “open script”.  You can run the script by clicking the edit tab and 
selection “Run all”.    
 
At what level of r2 does the power reach 0.9 with these parameters?  To determine 
this, you can plot the power against the level of r2 in excel for example.   
    
Now plot the power with 500 and 2000 records as well.  What does the level of r2 
need to be to get a power of 0.9 if 500 records are used.  If 2000 records are used? 
 
The next exercise is to determine the number of phenotypic records necessary to 
detect a QTL with power 0.9 with different levels of r2.  You can do this by looping 
through different numbers of phenotypic records (increments of 100 for example) in 
your script and keeping the r2 constant.  Plot the minimum number of records required 
to reach a power of 0.9 with r2=0.1,0.2,0.3,0.4….1.0.  (eg r2 on the x axis, and number 
of phenotypic records required to reach a power of 0.9 with this level of r2 on the y 
axis). 
 
Do the results agree with the statement that the number of records must be increased 
by a factor of 1/r2 in order to achieve the same power as observing the QTL itself?    
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6.4  Genomic selection using BLUP 
In this practical you will perform genomic selection in a small data set using BLUP.  

The data set consists of a reference population of 325 bulls with daughter yield 

deviations (DYDs) for protein %. This phenotype is an accurate predictor of 

genotype, eg the heritability is close to one.  The bulls have been genotyped for 10 

SNPs. 

 

Then there are a set of 31 calves who are selection candidates for this years progeny 

test team.  They are genotyped for the same 10 markers.  Your task is to predict 

GEBV for these 31 selection candidates.  To do this we will need to predict the effects 

of the 10 SNPs in the reference population, using the equations: 
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Where g are the SNP effects, 1n is a vector of ones (325 x 1, X is a design matrix 

allocating SNP genotype to records, µ is the overall mean.  We will use R to solve 

these equations.  The X matrix has already been built for you, and is contained in the 

file xvec_day4.inp.  The y matrix is contained in the file yvec_day4.inp. 

 

What you need to do is write a small R script to solve the equations.  This can be done 

by starting the script in notepad, then opening it in the R console.   

 

The first lines should declare the parameters number of markers and number of 

records.  A this point we will also specify the value of lamda as 10.   

nmarkers <- 10      #number of markers 
nrecords <- 325     #number of records 
lamda    <- 10     #value for lamda 
 

Next we will read in the files.  Change the path to the location where you have stored 
the files.  Note that these statements should all be on one line.  Have a look at these 
files before opening them.     
 
x <- 
matrix(scan("d:/iowacourse/practicals/day4/realData Example/xvec_day4.
inp"),ncol=nmarkers,byrow=TRUE) 
y <- 
matrix(scan("d:/iowacourse/practicals/day4/realData Example/yvec_day4.
inp"),byrow=TRUE) 
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So now we have the matrix x, the vector y.  We still need a vector of ones and a 

identity matrix dimension number of markers x number of markers….. 

ones <- array(1,c(nrecords)) 
ident_mat <-diag(nmarkers) 

 

The next step is to build the coefficient matrix.  This can be done in blocks, eg…. 

coeff <- array(0,c(nmarkers+1,nmarkers+1)) 
coeff[1:1, 1:1] <- t(ones)%*%ones 
coeff[1:1,2:(nmarkers+1)] <- t(ones)%*%x 

 

You will need to build the other blocks.  You will also need to build the right hand 

side of the equation.   

 

The solutions can be obtained easily by using the inbuilt function solve, 

solution_vec <- solve(coeff,rhs) 

 

Print out this vector of solutions (eg print(solution_vec)).  What is the solution for the 

mean?  Which SNP has the largest effect? 

 

Next we want to print GEBV for the selection candidates.  This is done with the 

equation: 

 

∧
= gXGEBV  

 

The g_hat are the solutions for the SNP effects you have just solved.  The xvector for 

the selection candidates is in the file xvec_prog.inp.  Can you write a small R script to 

calculate the GEBV? 

 

Fours years later, all the selection candidates receive a phenotypic record from a 

progeny test.  The results are in the file yvec_prog.inp.  What is the correlation 

between your GEBV and the TBV?   (Don’t expect this to be to high with only 10 

SNPs).  
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6.5 Genomic selection using a Bayesian approach 
For the first exercise, we will analyse a small data set using the method BayesA of 

Meuwissen et al. (2003).  We will analyse the data with a script written in the R 

language, meuwissenBayesA.R.  The script considers single markers rather than 

marker haplotypes, but would be easy to extend to haplotypes.  The script estimates 

single marker effects (g), a variance for each of these effects (gvar), and overall mean 

mu and the error variance (vare).  A description of the program is given here 

(descriptions in bold). 

 

R coding of genomic selection from Meuwissen et al. (2001) 
 
Set the number of markers, the number of markers and the number of               # 
iterations 
 
nmarkers <- 3      #number of markers 
nrecords <- 25     #number of records 
numit    <- 1000   #number of iterations 
 

The next section reads in the data from two files.  The first is the x vector, with   -
0 for the 1 1 SNP genotype, 1 for 1 2 and 2 for 2 2.  The second file is a vector  of 
phenotypic records.  Set the path to the location of your files. 
   
x <- 
matrix(scan("d:/iowacourse/practicals/day5/smallExa mple/xvec.inp"),nc
ol=nmarkers,byrow=TRUE) 
y <- 
matrix(scan("d:/iowacourse/practicals/day5/smallExa mple/yvec.inp"),by
row=TRUE) 
 

Set up some storage vectors and matricies to store parameter values across 
iterations 
 
gStore <- array(0,c(numit,nmarkers)) 
gvarStore <- array(0,c(numit,nmarkers)) 
vareStore <- array(0,c(numit)) 
muStore <- array(0,c(numit)) 
ittstore <- array(0,c(numit)) 
 

The Gibbs cycles begin. 
 
Step 1.  Initialization of g and mu, declaration of other arrays. 
 
g <- array(0.01,c(nmarkers))  
mu <- 0.1 
gvar <- array(0.1,c(nmarkers)) 
ones <- array(1,c(nrecords)) 
e <- array(0,c(nrecords)) 
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Begin the iterations 
 
for (l in 1:numit) { 
 

Step 2.  Sample vare from an inverse chi-square posterior    
      e <- y - x%*%g - mu   # First calculate the vector of residuals 
      vare <- (t(e)%*%e)/rchisq(1,nrecords-2) 
             

Step 3 Sample the mean from a normal posterior  
      mu <- rnorm(1,(t(ones)%*%y - 
t(ones)%*%x%*%g)/nrecords,sqrt(vare/nrecords)) 

 
Step 4.  Sample the gvar from the inverse chi square posterior 
 
      for (j in 1:nmarkers) { 
 
#       gvar[j] <-  (0.002+g[j]*g[j])/rchisq(1,4.012+1)  # Meuwissen                            
#et al. (2001) prior 
#       gvar[j] <- (g[j]*g[j])/rchisq(1,1)        #  Xu (2003)  #prior 
        gvar[j] <- (g[j]*g[j])/rchisq(1,0.998)    #  Te Braak et # al. 
(2006) prior 
      } 
 
 

Step 5 Sample the g from a normal distribution 
      z <- array(0,c(nrecords)) 
      for (j in 1:nmarkers) { 
       gtemp <- g 
       gtemp[j] <- 0 
       for (i in 1:nrecords) { 
        z[i] <- x[i,j] 
       } 
       mean <- ( t(z)%*%y-t(z)%*%x%*%gtemp-t(z)%*%o nes*mu ) / 

(t(z)%*%z+vare/gvar[j])   # Calculating the mean of the distribution 
       g[j] <- rnorm(1,mean,sqrt(vare/(t(z)%*%z+var e/gvar[j]))) 
      } 
 

The final step in each iteration is to store the parameter values       
      for (j in 1:nmarkers) { 
        gStore[l,j] <- g[j] 
        gvarStore[l,j] <- gvar[j] 
      } 
      vareStore[l] <- vare 
      muStore[l] <- mu  
      ittstore[l] <- l 
}    

This is the end of the program. 

 

Consider a data set with three markers.  The data set was simulated as: the effect of a 

2 allele at the first marker is 3, the effect of a 2 allele at the second marker is 0, and 

the effect of a 2 allele at the third marker was -2.  The mu was 3 and the vare was 1.  

The data set is: 
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Animal Phenotype 
Marker1 
allele 1 

Marker1 
allele 2 

Marker2 
allele 1 

Marker 2 
allele 2 

Marker3 
allele 1 

Marker 3 
allele 2 

1 9.68 2 2 2 1 1 1 
2 5.69 2 2 2 2 2 2 
3 2.29 1 2 2 2 2 2 
4 3.42 1 1 2 1 1 1 
5 5.92 2 1 1 1 1 1 
6 2.82 2 1 2 1 2 2 
7 5.07 2 2 2 1 2 2 
8 8.92 2 2 2 2 1 1 
9 2.4 1 1 2 2 1 2 

10 9.01 2 2 2 2 1 1 
11 4.24 1 2 1 2 2 1 
12 6.35 2 2 1 1 1 2 
13 8.92 2 2 1 2 1 1 
14 -0.64 1 1 2 2 2 2 
15 5.95 2 1 1 1 1 1 
16 6.13 1 2 2 1 1 1 
17 6.72 2 1 2 1 1 1 
18 4.86 1 2 2 1 1 2 
19 6.36 2 2 2 2 2 2 
20 0.81 1 1 2 1 1 2 
21 9.67 2 2 1 2 1 1 
22 7.74 2 2 2 1 1 2 
23 1.45 1 1 2 2 2 1 
24 1.22 1 1 2 1 2 1 
25 -0.52 1 1 2 2 2 2 

   

The first step is to make the files yvec.inp and xvec.inp.  In the case of yvec.inp, this 

is simply the list of phenotypes (no headers or identifiers).  For xvec.inp, the number 

of 2 alleles at each marker for each animal, as a 25 x 3 matrix.  The first line of this 

file would be (for animal 1)       “2 1 0”. 

 

Save these files in a convenient location.  Next open the R graphical interface, and 

open the script “meuwissenBayesA.R”.  Check the number of markers is set to 3, and 

the number of records 25.  You will have to change the path of the files as well.   

 

Choose a number of iterations, say 1000.   

 

Run the script using the run all command.  As the script runs, it stores values for g, 

gvar, mu and vare for each iteration.  After the script has run, you can use the plotting 

facilities in R to investigate changes in the parameters over iterations.     
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For example, to look at the effect of the third marker across iterations, you would 

enter the command 

 

> plot(ittstore[1:1000],gStore[1:1000,1]) 

 

Use this command to investigate each of the parameters in turn, and determine if they 

appear to be fluctuating about the correct values. 

 

We can also plot the posterior distribution, for example for the effect of the third 

marker.  We would discard the first 100 iterations of the program as “burn in”: 

 

> plot(density(gStore[100:1000,1])) 

 

Does the distribution appear to be normal?  What about the distributions of the other 

parameters? 

 

To get the mean of the distribution, you would type: 

mean(gStore[100:1000,1]) 

Do the means of the parameters agree with the true value of these parameters? 

 

Now a new set of animals (selection candidates without phenotypes) are genotyped 

for the three markers.  Their genotypes are: 

 

Animal 
Marker1 
allele 1 

Marker1 
allele 2 

Marker2 
allele 1 

Marker2 
allele 2 

Marker3 
allele 1 

Marker3 
allele 2 TBV 

26 2 2 2 1 2 1 4 
27 2 1 1 2 2 1 1 
28 1 1 1 2 2 2 -4 
29 1 2 2 2 2 1 1 
30 1 1 2 2 1 2 -2 
31 2 1 1 2 2 1 1 
32 2 2 2 2 2 2 2 
33 2 2 2 2 1 2 4 
34 2 2 2 1 1 2 4 
35 1 1 1 2 2 2 -4 

 

Calculate the GEBV for these animals as: 

∧
= gXGEBV  
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What is the correlation with the True breeding values ? (given in the table above, 

TBV).    

 

Next we will use the script to estimate SNP effects in the reference population in 

practical 5.6.  So you will need to read in the x matrix in xvec_day4.inp, the y vector 

in yvec_day4.inp.  The number of markers in the program will need to be changed to 

10 and the number of records to 325.   

 

Run the script. 

 

The next thing you want to do is extract SNP solutions.  After the script has run, you 

can do this by typing: 

> mean(gStore[100:1000,1])  

This will give you the mean value of the SNP effect for SNP 1 from iterations 100 to 

1000 (eg, excluding burn in).  So for SNP 6 you would type 

>mean(gStore[100:1000,6]).   

 

Compare your SNP solutions from the Bayes program to those from BLUP (practical 

5.6).  One of the reasons for using the Bayesian approach is to allow different 

variances of SNP effect across chromosome segments.  In particular, the Bayes 

approach should set some variances (and so SNP effects) to very close to zero.  Does 

this seem to have happened?  How many QTL would you say are on the chromosome 

segment? 

 

Can you predict GEBV for the selection candidates in practical 5.6 using the SNP 

solutions from the Bayesian approach?  Are they more highly correlated with the 

TBV than the GEBV from the BLUP approach?    

 

Now change the R script to use the prior distribution of chromosome segment 

variances of effects to that of Meuwissen et al. (2001), eg.  )002.0,012.4(2−χ .  Now 

re-run the script.  How do the SNP solutions compare with those when the Xu (2003) 

prior is used?  Are the accuracy of the GEBV improved?  
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6.6 Bayesian approach using a prior for chromosome 
segment variances with a large weight at zero (Baye sB)  
 

In this exercise, we will modify the BayesA script from the previous exercise to 

sample from a prior distribution for the chromosome segment variances with a large 

weight at zero.  This incorporates our prior knowledge that many of the chromosome 

segments will not contain any QTL with an effect on the quantitative trait.   

 

The prior of the variance of chromosome segment effects is now 

 

Unlike BayesA, the posterior of the variance of chromosome segment effects does not 

have a known distribution and cannot be sampled directly in the Gibbs chain.  We will 

therefore implement a Metropolis Hastings (MH) step with the Gibbs chain to sample 

gvar and g simultaneously.   

 

To modify the code, you will need first specify the number of MH cycles you wish to 

do: 

# Parameters 
nmarkers <- 10      #number of markers 
nrecords <- 325     #number of records 
numit    <- 1000   #number of iterations 
propSegs <- 0.66    #Prior proportion of segments h aving a non zero 
effect  
numMHCycles = 20 # Number of metropolis hastings cy cles when sampling 
variance of segments 

 

The next step is to correct the phenotypic records for all number of MH cycles when 

sampling the gvar and g (Steps 4 and 5).  We will store the corrected records in a 

vector called ycorr: 

# Step 4.  Sample the gvar and g using Metropolis H astings algorithm 
(Independance sampling) 
      for (j in 1:nmarkers) { 
 
# First correct records for all other effects inclu ding mean and 
other markers 
       gtemp <- g 
       gtemp[j] <- 0 
       ycorr <- array(0,c(nrecords,1)) 
       Ival <- array(0,c(nrecords,nrecords)) 
       for (i in 1:nrecords) { 
        ycorr[i] <- y[i] - mu 
        Ival[i,i] <- vare 
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        for (k in 1:nmarkers) { 
         ycorr[i] = ycorr[i] - x[i,k]*gtemp[k] 
        } 
       } 

 

In this step we have also built a matrix which is nrecords x nrecords and has vare on 

the diagonal, as we will need this in the next step.  

  

The next step is to calculate the likelihood of the data given the current gvar, before 

we sample a new one.  The formula for the likelihood is: 

)(2/1
||2

1
|(

2/12/1
2 corrcorreL

ngi yV'y
V

y* 1−−=
π

σ  where ))2 2
eIσ'X(IXV += ii giσ and 

|V| is the determinant of V.  In R we can do this calculation as: 

# Now calculate likelihood with current gvar[j] p(g var[j]|ycorr) 
going into the chain 
       V = (x[,j]*gvar[j])%*%t(x[,j])+Ival 
       LH1 <- 1/(2*pi^(1/2*nrecords)*sqrt(det(V)))* exp(-
0.5*t(ycorr)%*%ginv(V)%*%ycorr) 

The ginv function calculates the generalised inverse of V.  You will have to load the 

R package MASS to get this function.  (Load packages in the     

It is also useful to calculate the likelihood of the data when the gvar is zero, as we will 

sample gvar=0 many times in the MH cycles. 

# And likelihood if variance is zero 
       V = Ival 
       LH0 <-  1/(2*pi^(1/2*nrecords)*sqrt(det(V))) *exp(-
0.5*t(ycorr)%*%ginv(V)%*%ycorr) 

Now we can run the MH cycles, sampling a new gvar, comparing the likelihood of the 

data with the new gvar to the old gvar.  If the likelihood improves, we will replace the 

old gvar with the new gvar.  If it does not improve, we will replace it with a 

probability LH(new gvar)/LH(old gvar).  If we do replace gvar, we will also sample 

the effect of the SNP with the new gvar.   

       for (kk in 1:numMHCycles) { 
        if (runif(1,0,1)<propSegs) {      # sample segment variance 
from (1-progSegs)*0 + propSegs*chi-square 
# Sample new gvar[j] from driver distribution 
         gvar_new <- 1/rchisq(1,4.012)       
         V = (x[,j]*gvar_new)%*%t(x[,j])+Ival 
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         LH2 <- 1/(2*pi^(1/2*nrecords)*sqrt(det(V)) )*exp(-
0.5*t(ycorr)%*%ginv(V)%*%ycorr) 
         alpha <- min(LH2/LH1,1) # replace gvar wit h prob LH(new 
#gvar)/LH(old gvar). 
         if (runif(1)<alpha) { 
# Acceptance 
          gvar[j] = gvar_new 
          LH1 <- LH2 
         }   
        }  
        else {         # if zero variance sampled 
         alpha <- min(LH0/LH1,1) 
         if (runif(1)<alpha) { 
# Acceptance 
          gvar[j] = 0  
          LH1 <- LH0 
         } 
        } 
       } 
       if (gvar[j]>0) { 
        meanval <- ( t(x[,j])%*%y-t(x[,j])%*%x%*%gt emp-
t(x[,j])%*%ones*mu ) / (t(x[,j])%*%x[,j]+(vare)/gva r[j]) 
        g[j] <- 
rnorm(1,meanval,sqrt((vare)/(t(x[,j])%*%x[,j]+(vare )/gvar[j]))) 
       } 
       else { 
        g[j] <-0 
       } 
      } 

Once you have finished coding the method, save your R script as a new file 

(BayesB.R for example).   

Now run the script with the small data set from practical 5.7 (3 markers and 25 

records)  Use 20 MH cycles.  Look at the values sampled for each of 3 segments 

across the Gibbs chain.  Do any of the g get set consistently to zero?  Now choose 

different values for the proportion of segments set to zero and the parameters of the 

inverse chi square parameters where gvar new is sampled from (both these for the 

prior of the gvar).  How sensitive are the results to the parameters of the prior 

distribution of the variances of chromosome segment effects?   
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