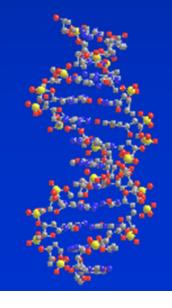


Genomic Selection in the era of Genome sequencing

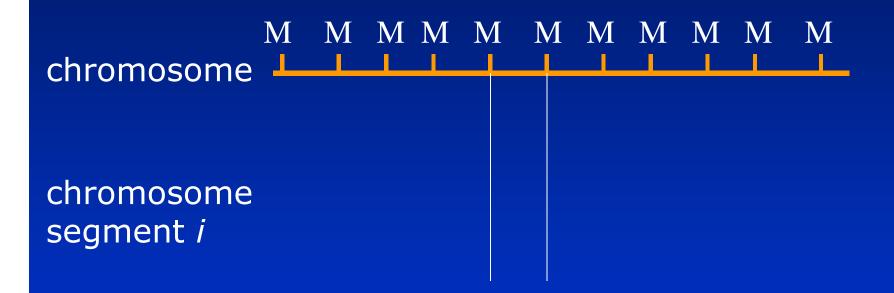


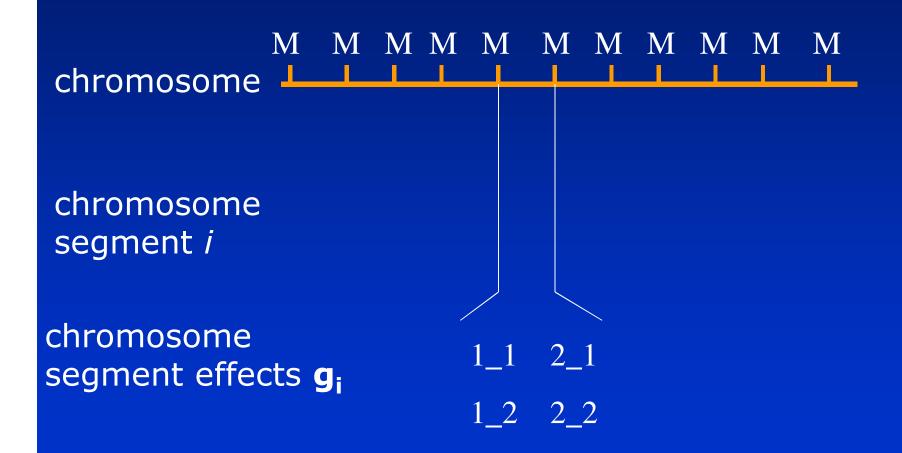
Course overview

- Day 1
 - Linkage disequilibrium in animal and plant genomes
- Day 2
 - Genome wide association studies
- Day 3
 - Genomic selection
- Day 4
 - Genomic selection
- Day 5
 - Imputation and whole genome sequencing for genomic selection

- Introduction
- Genomic selection with Least Squares and BLUP
- Introduction to Bayesian methods
- Genomic selection with Bayesian methods
- Comparison of accuracy of methods

- Problem marker assisted selection is only a proportion of genetic variance is tracked with markers
 - Eg. 10 QTL << 5% of the genetic variance
- Alternative is to trace all segments of the genome with markers
 - Divide genome into chromosome segments based on marker intervals?
 - Capture all QTL = all genetic variance

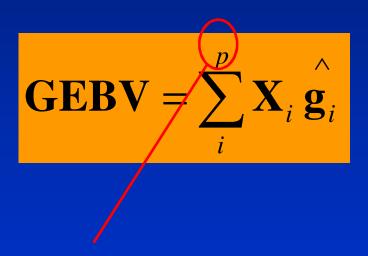




 Predict genomic breeding values as sum of effects over all segments

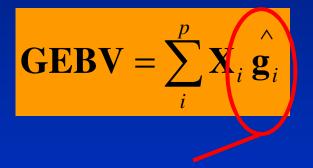
$$\mathbf{GEBV} = \sum_{i}^{p} \mathbf{X}_{i} \mathbf{g}_{i}^{\hat{}}$$

 Predict genomic breeding values as sum of effects over all segments



Number of chromosome segments

- Genomic selection can be implemented
 - with marker haplotypes within chromosome segments



1_1 0.3

1_2 0.0

2_1 -0.2

2_2 -0.1

- Genomic selection can be implemented
 - with marker haplotypes within chromosome segments

$$\mathbf{GEBV} = \sum_{i}^{p} \mathbf{X}_{i} \mathbf{g}_{i}^{\hat{}}$$

with single markers

$$\mathbf{GEBV} = \sum_{i}^{p} \mathbf{X}_{i} g_{i}$$

- Genomic selection exploits linkage disequilibrium
 - Assumption is that effect of haplotypes or markers within chromosome segments picking up QTL and will have same effect across the whole population
- Possible within dense marker maps now available

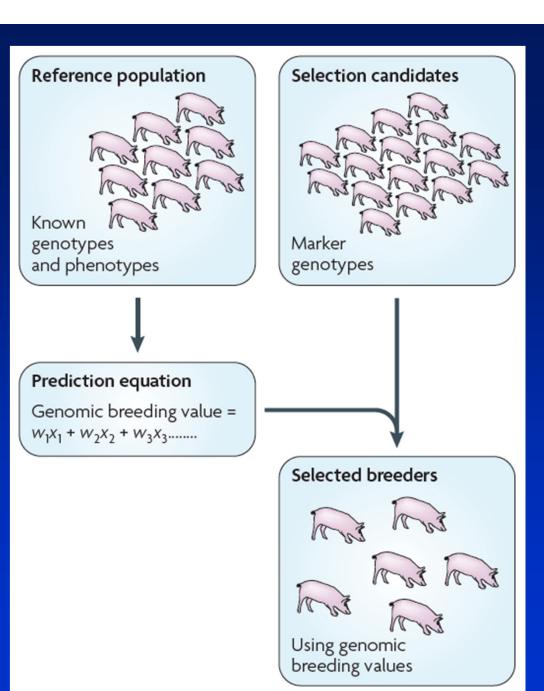
1 1 0.3

1_2 0.0

2_1 -0.2

2_2 -0.1

 Genomic selection avoids bias in estimation of effects due to multiple testing, as all effects fitted simultaneously



- First step is to predict the chromosome segment effects in a reference population
- Number of effects >>> than number of records
- Eg. 10 000 intervals * 4 haplotypes = 40 000 haplotype effects
- From ~ 2000 records?
- Need methods that can deal with this

- Introduction
- Genomic selection with Least Squares and BLUP
- Introduction to Bayesian methods
- Genomic selection with Bayesian methods
- Comparison of accuracy of methods

Least squares Genomic selection

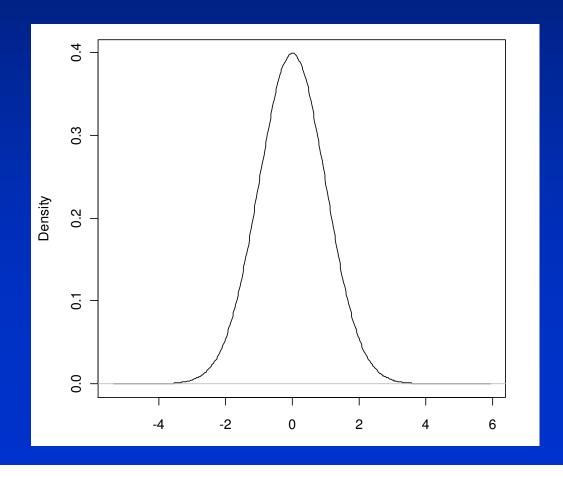
- Two step procedure
 - Test each chromosome segment for presence of QTL (fitting haplotypes within segment), take significant effects
 - Fit the significant effects simultaneously in multiple regression
 - Predict GEBVs
- Identical to Marker assisted selection with multiple markers
- Problems remain
 - Do not capture all QTL
 - Over-estimation of haplotype effects due to setting of significance threshold

- BLUP = best linear unbiased prediction
- Model:

$$\mathbf{y} = \mu \mathbf{1}_{\mathbf{n}} + \sum_{i=1}^{p} \mathbf{X}_{i} \mathbf{g}_{i} + \mathbf{e}$$

• In BLUP we assume variance of haplotype effects across all segments is equal, eg $E(\mathbf{g}) \sim N(0, \sigma_q^2)$, where $g = [g_1g_2g_3...g_p]$

 BLUP assumes normal distribution of SNP/haplotype effects



- **BLUP** = best linear unbiased prediction
- Then we can estimate segment effects as:

$$\begin{bmatrix} \hat{\mu} \\ \hat{g} \end{bmatrix} = \begin{bmatrix} \mathbf{1_n'1_n} & \mathbf{1_n'X} \\ \mathbf{X'1_n} & \mathbf{X'X+I}\lambda \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{1_n'y} \\ \mathbf{X'y} \end{bmatrix}$$

•
$$\lambda = \sigma_e^2 / \sigma_g^2$$

- Example
- A "simulated" data set
- Single chromosome, with 10 markers
- Phenotypes "simulated"
 - overall mean of 1
 - an effect for SNP 1 of 2 allele of 1
 - normally distributed error term with mean 0 and variance
 1.

Example

			X									
Animal	Y		1	2	3	4	5	6	7	8	9	10
1		0.19	0	0	0	0	0	0	1	2	0	2
2		1.23	1	0	0	1	1	1	2	1	0	1
3		0.86	1	0	0	1	0	0	1	1	1	1
4		1.23	1	1	1	1	0	1	2	1	1	1
5		0.45	0	1	1	1	1	1	2	1	0	1

- 10 SNPs
- Only 5 phenotypic records.

Example

			X									
Animal	Y		1	2	3	4	5	6	7	8	9	10
1).19	0	0	0	0	0	0	1	2	0	2
2	2 1	.23	1	0	0	1	1	1	2	1	0	1
3	3 0).86	1	0	0	1	0	0	1	1	1	1
4	1	.23	1	1	1	1	0	1	2	1	1	1
5	5 0).45	0	1	1	1	1	1	2	1	0	1

- Assume value of 1 for λ
- $1_n = [1 \ 1 \ 1 \ 1 \ 1]$

$$\begin{bmatrix} \hat{\mu} \\ \hat{g} \end{bmatrix} = \begin{bmatrix} \mathbf{1}_{n} & \mathbf{1}_{n} & \mathbf{1}_{n} & \mathbf{X} \\ \mathbf{X}'\mathbf{1}_{n} & \mathbf{X}'\mathbf{X} + \mathbf{I}\lambda \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{1}_{n}'\mathbf{y} \\ \mathbf{X}'\mathbf{y} \end{bmatrix}$$

Example

Mean	0.47
SNP1	0.29
SNP2	-0.05
SNP3	-0.05
SNP4	0.08
SNP5	-0.02
SNP6	0.13
SNP7	0.13
SNP8	-0.08
SNP9	0.11
SNP10	-0.08

 Now we want to predict GEBV for a group of young animals without phenotypes.

$$\mathbf{GEBV} = \mathbf{X} \mathbf{g}^{\wedge}$$

 We have the g_hat, and we can get X from their haplotypes (after genotyping).....

Progeny	X									
1	1	1	1	1	1	1	2	1	0	1
2	1	0	0	1	1	1	2	1	0	1
3	1	0	0	1	1	1	2	1	0	1
4	1	0	0	1	1	1	2	1	0	1
5	0	0	0	0	0	0	1	2	0	2

• GEBV

$$\mathbf{GEBV} = \mathbf{X} \overset{\wedge}{\mathbf{g}}$$

GEBV g 1111112101 0.29 0.47 -0.05 0.58 1001112101 1001112101 -0.05 0.58 1001112101 0.08 0.58 000000120 2 -0.02-0.20 0.13 0.13 -0.080.11 -0.08

- Where do we get σ_q^2 from?
- Can estimate total additive genetic variance and divide by number of segments, eg $\sigma_q^2 = \sigma_a^2/p$
- If using single markers take account of heterozygosity

$$\sigma_g^2 = \sigma_a^2 / 2 \sum_{i=1}^p q_i (1 - q_i)$$

- Ridge regression (Bayesian approach)
- Cross validation

- An equivalent model
- If there are many QTLs whose effects are normally distributed with constant variance,
- Then genomic selection equivalent to replacing the expected relationship matrix with the realised or genomic relationship matrix (**G**) estimated from DNA markers in normal BLUP equations.
 - G_{ij} = proportion of genome that is IBD between animals i and j

- An equivalent model
- Rescale X to account for allele frequencies

$$-w_{ij} = x_{ij} - 2p_j$$

Then breeding values are

$$-v = Wg$$
 $GEBV = \chi g$

And

$$G = WW'/2\sum_{j=1}^{p} p_{j}(1-p_{j})$$

Then

$$V(\mathbf{v}) = \mathbf{G}\boldsymbol{\sigma}_a^2$$

An equivalent model

$$\mathbf{y} = \mu \mathbf{1}_{\mathbf{n}} + \mathbf{Z}\mathbf{v} + \mathbf{e}$$

$$\begin{bmatrix} \hat{\mu} \\ \hat{\mathbf{v}} \end{bmatrix} = \begin{bmatrix} \mathbf{1_n'1_n} & \mathbf{1_v'Z} \\ \mathbf{Z'1_n} & \mathbf{Z'Z} + \mathbf{G}^{-1} \frac{\sigma_e^2}{\sigma_a^2} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{1_n'y} \\ \mathbf{Z'y} \end{bmatrix}$$

- An equivalent model
 - Model 1.

$$\mathbf{y} = \mu \mathbf{1}_{\mathbf{n}} + \sum_{i=1}^{p} \mathbf{X}_{i} \mathbf{g}_{i} + \mathbf{e}$$

$$\mathbf{y} = \mu \mathbf{1}_{\mathbf{n}} + \sum_{i=1}^{p} \mathbf{X}_{i} \mathbf{g}_{i} + \mathbf{e} \begin{bmatrix} \hat{\mu} \\ \hat{g} \end{bmatrix} = \begin{bmatrix} \mathbf{1}_{\mathbf{n}}' \mathbf{1}_{\mathbf{n}} & \mathbf{1}_{\mathbf{n}}' \mathbf{X} \\ \mathbf{X}' \mathbf{1}_{\mathbf{n}} & \mathbf{X}' \mathbf{X} + \mathbf{I} \frac{\sigma_{e}^{2}}{\sigma_{g}^{2}} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{1}_{\mathbf{n}}' \mathbf{y} \\ \mathbf{X}' \mathbf{y} \end{bmatrix} \mathbf{GEBV} = \mathbf{X} \hat{\mathbf{g}}$$

- Model 2.

- An equivalent model
 - Model 1.

$$\mathbf{y} = \mu \mathbf{1}_{\mathbf{n}} + \sum_{i=1}^{p} \mathbf{X}_{i} \mathbf{g}_{i} + \mathbf{e}$$

$$\mathbf{y} = \mu \mathbf{1}_{\mathbf{n}} + \sum_{i=1}^{p} \mathbf{X}_{i} \mathbf{g}_{i} + \mathbf{e} \begin{bmatrix} \hat{\mu} \\ \hat{g} \end{bmatrix} = \begin{bmatrix} \mathbf{1}_{\mathbf{n}}' \mathbf{1}_{\mathbf{n}} & \mathbf{1}_{\mathbf{n}}' \mathbf{X} \\ \mathbf{X}' \mathbf{1}_{\mathbf{n}} & \mathbf{X}' \mathbf{X} + \mathbf{I} \frac{\sigma_{e}^{2}}{\sigma_{g}^{2}} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{1}_{\mathbf{n}}' \mathbf{y} \\ \mathbf{X}' \mathbf{y} \end{bmatrix} \mathbf{GEBV} = \mathbf{X} \hat{\mathbf{g}}$$

- Model 2.

$$\mathbf{y} = \mu \mathbf{1}_{\mathbf{n}} + \mathbf{Z}\mathbf{v} + \mathbf{e}$$

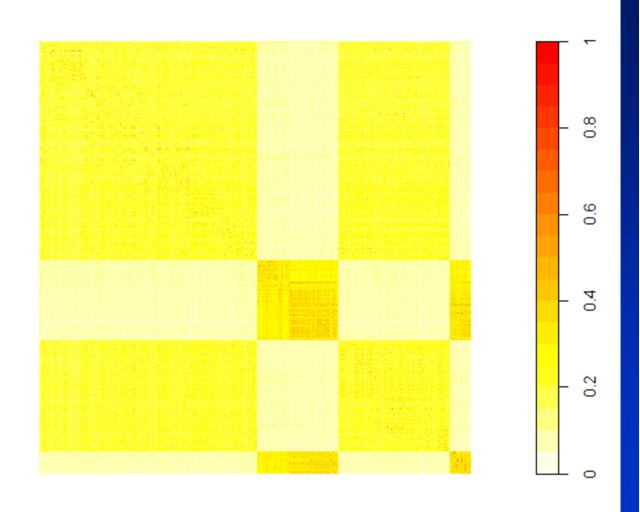
$$\mathbf{y} = \mu \mathbf{1}_{\mathbf{n}} + \mathbf{Z}\mathbf{v} + \mathbf{e} \begin{bmatrix} \hat{\mu} \\ \hat{\mathbf{v}} \end{bmatrix} = \begin{bmatrix} \mathbf{1}_{\mathbf{n}}' \mathbf{1}_{\mathbf{n}} & \mathbf{1}_{\mathbf{v}}' \mathbf{Z} \\ \mathbf{Z}' \mathbf{1}_{\mathbf{n}} & \mathbf{Z}' \mathbf{Z} + \mathbf{G}^{-1} \frac{\sigma_e^2}{\sigma_v^2} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{1}_{\mathbf{n}}' \mathbf{y} \\ \mathbf{Z}' \mathbf{y} \end{bmatrix}$$

Holstein reference n = 781

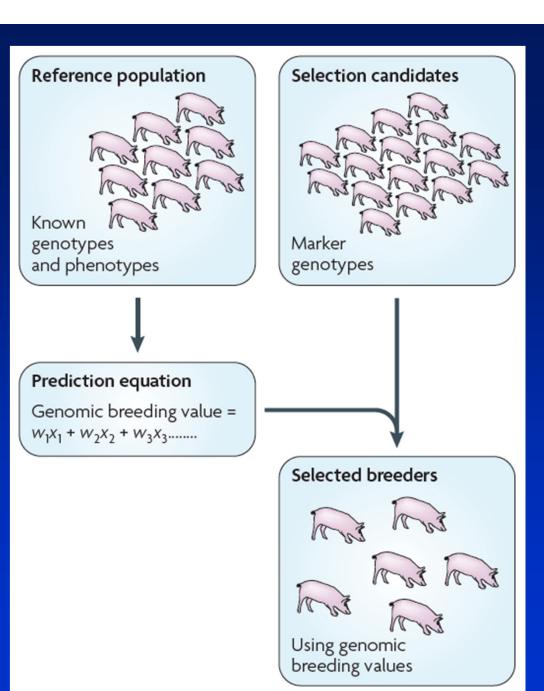
Jersey reference n = 287

Holstein validation n = 400

Jersey validation n = 77

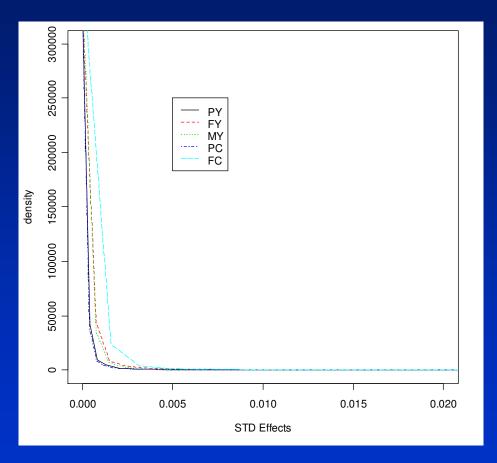


- An equivalent model
- Why use model 2.
 - If number of markers >>> large than number of animals, more computationally efficient
 - Can be integrated into national evaluations more readily?
 - Calculate accuracy of GEBV from inverse coefficient matrix



- Introduction
- Genomic selection with Least Squares and BLUP
- Introduction to Bayesian methods
- Genomic selection with Bayesian methods
- Comparison of accuracy of methods

- BLUP assumes normally distributed QTL effects
- Does not match prior knowledge of distributions of QTL effects for some traits
- Use Bayesian approaches to incorporate prior knowledge



Bayes theorem

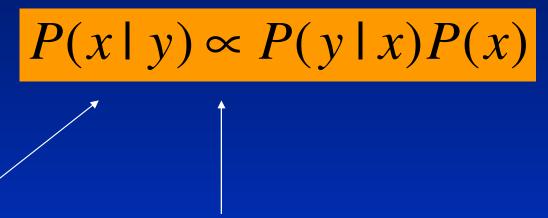
$$P(x \mid y) \propto P(y \mid x)P(x)$$

Bayes theorem

$$P(x \mid y) \propto P(y \mid x)P(x)$$

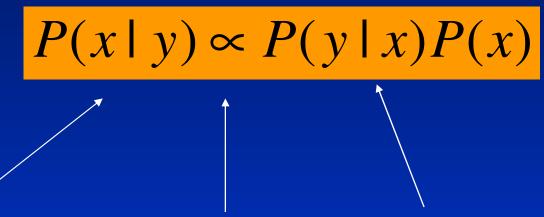
Probability of parameters x given the data y (posterior)

Bayes theorem



Probability of Is proportional to parameters x given the data y (posterior)

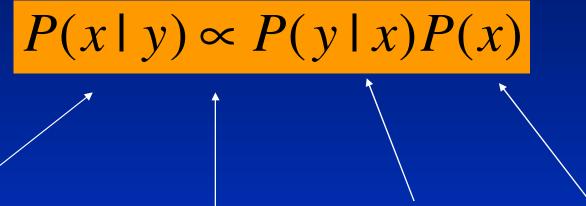
Bayes theorem



Probability of parameters x given the data y (posterior)

Is proportional to Probability of data y given the x (likelihood of data)

Bayes theorem



Probability of parameters x given the data y (posterior)

Is proportional to Probability of Priodata y given the probability of x (likelihood of x data)

Prior probability of x

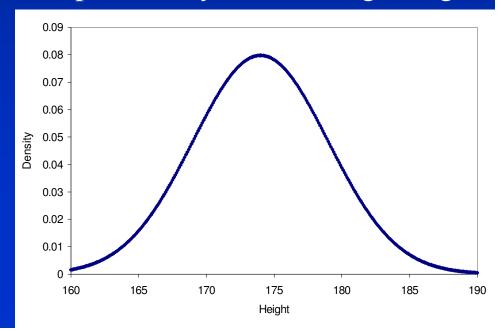
- Consider an experiment where we measure height of 10 people to estimate average height
- We want to use prior knowledge from many previous studies that average height is 174cm with standard error 5cm

y=average height + e

Bayes theorem

$$P(x \mid y) \propto P(y \mid x)P(x)$$

Prior probability of x (average height)



Bayes theorem

$$P(x \mid y) \propto P(y \mid x)P(x)$$

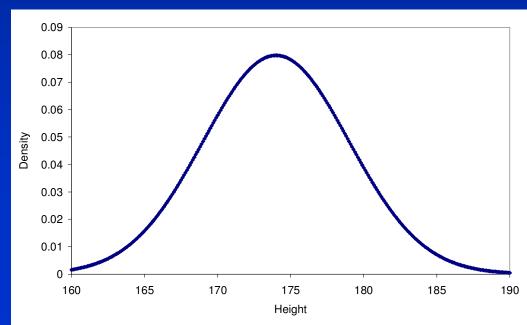
From the data.....

$$\overline{x} = 178$$

$$s.e = 5$$

$$s.e = 5$$

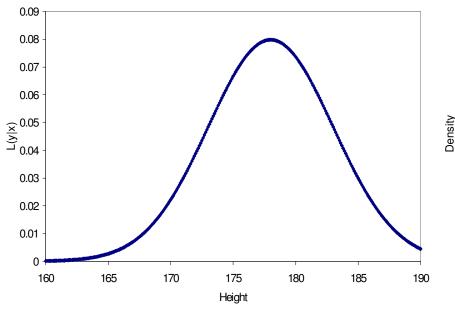
Prior probability of x (average height)

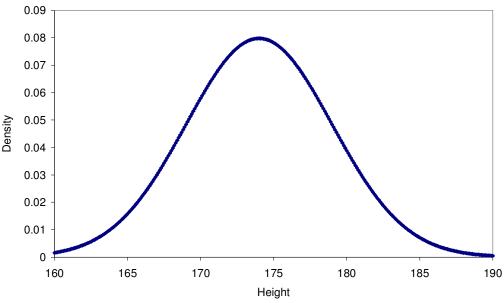


Bayes theorem

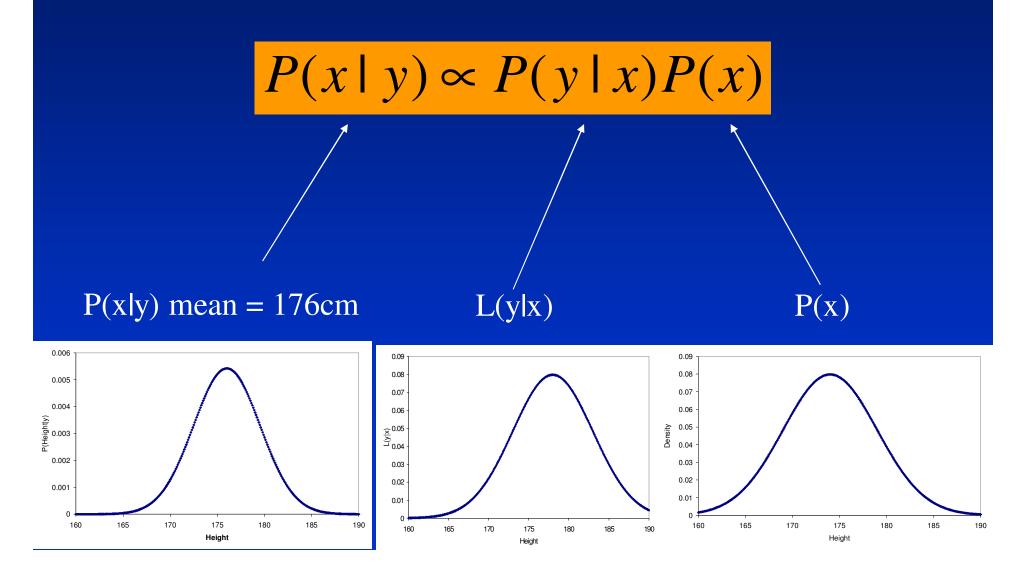
$$P(x \mid y) \propto P(y \mid x)P(x)$$

Likelihood of data (y) given height x, most likely x = 178cm Prior probability of x (average height)

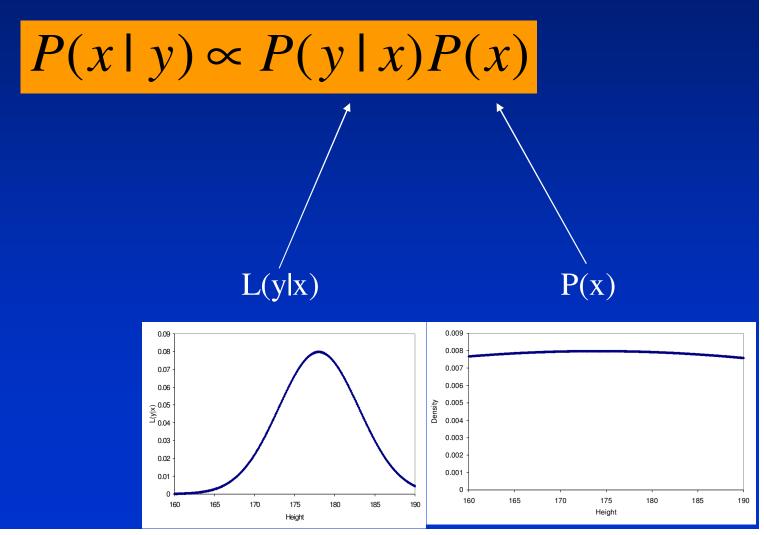




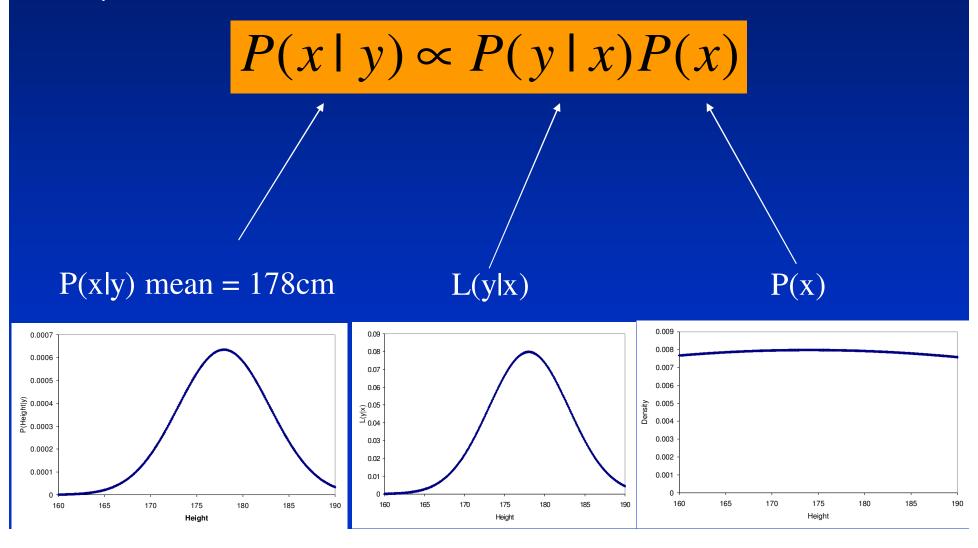
Bayes theorem



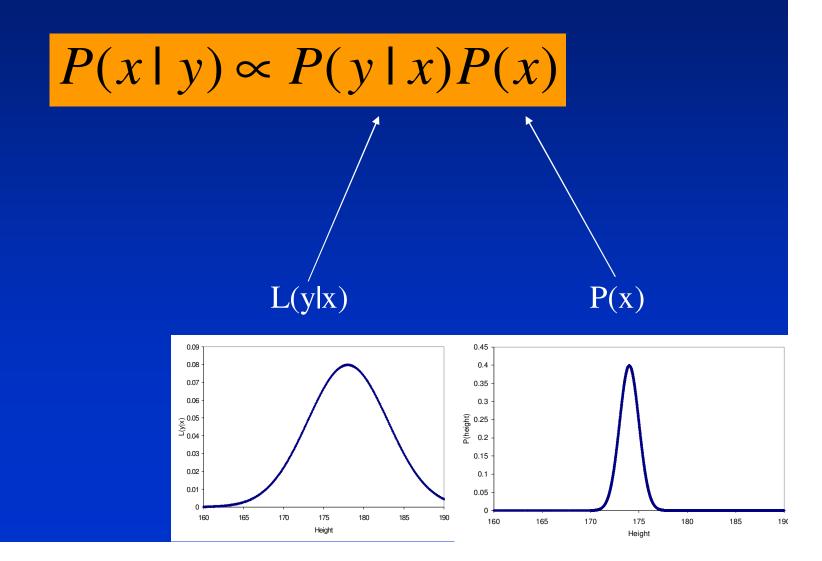
- Bayes theorem
- Less certainty about prior information? Use less informative (flat) prior



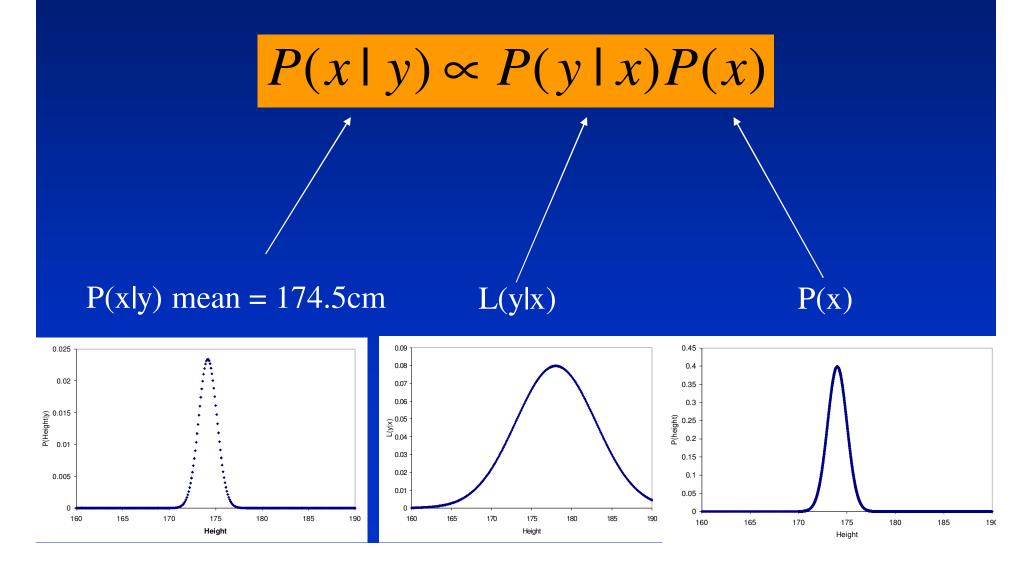
- Bayes theorem
- Less certainty about prior information? Use less informative (flat) prior



- Bayes theorem
- More certainty about prior information? Use more informative prior

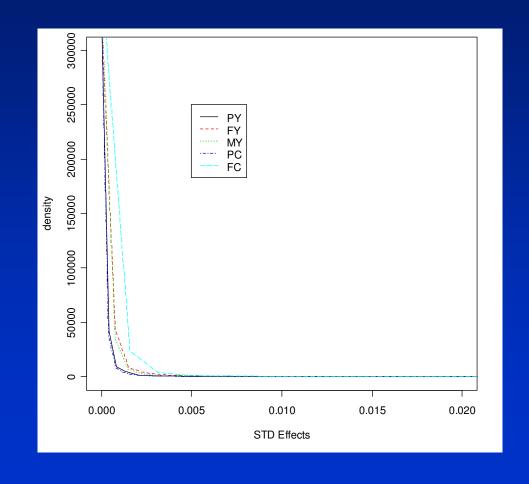


- Bayes theorem
- More certainty about prior information? Use *more* informative prior

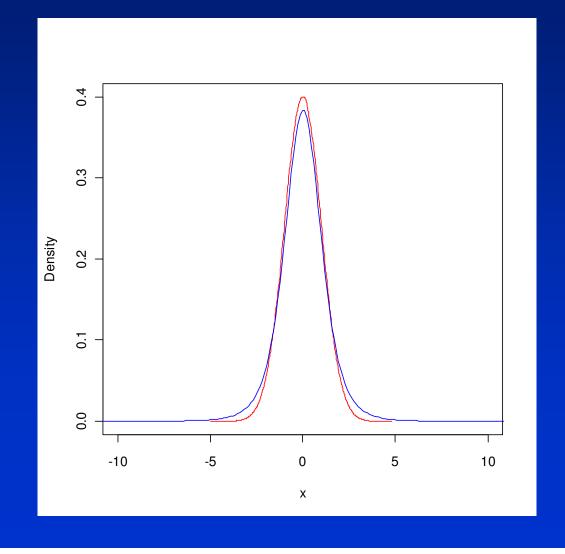


- Introduction
- Genomic selection with Least Squares and BLUP
- Introduction to Bayesian methods
- Genomic selection with Bayesian methods
- Comparison of accuracy of methods

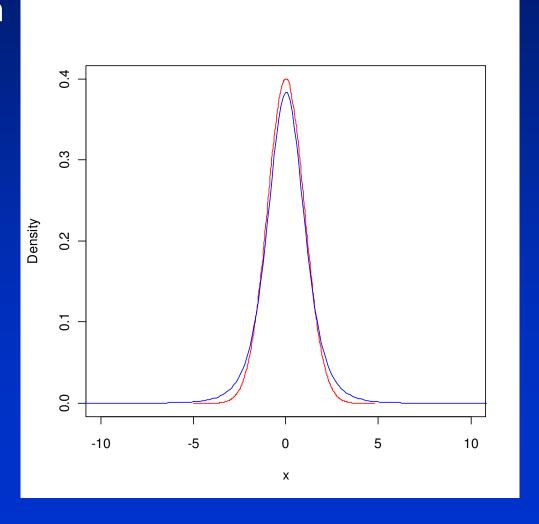
- For some traits prior knowledge suggests tdistribution of effects
- How to incorporate this into our predictions?

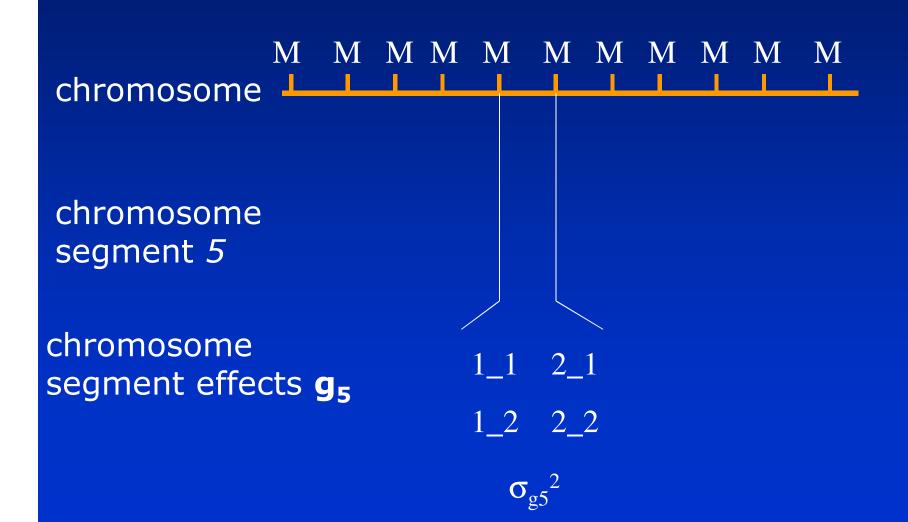


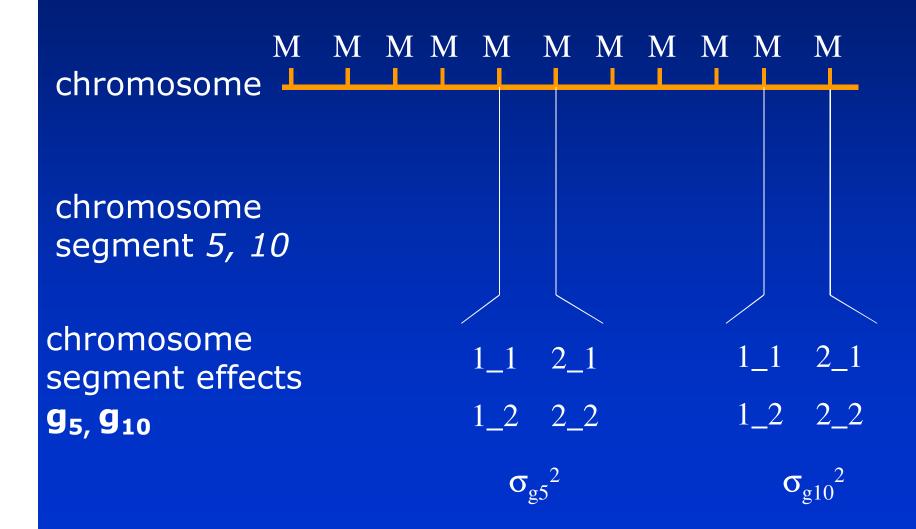
- For some traits prior knowledge suggests t-distribution of effects
- How to incorporate this into our predictions?

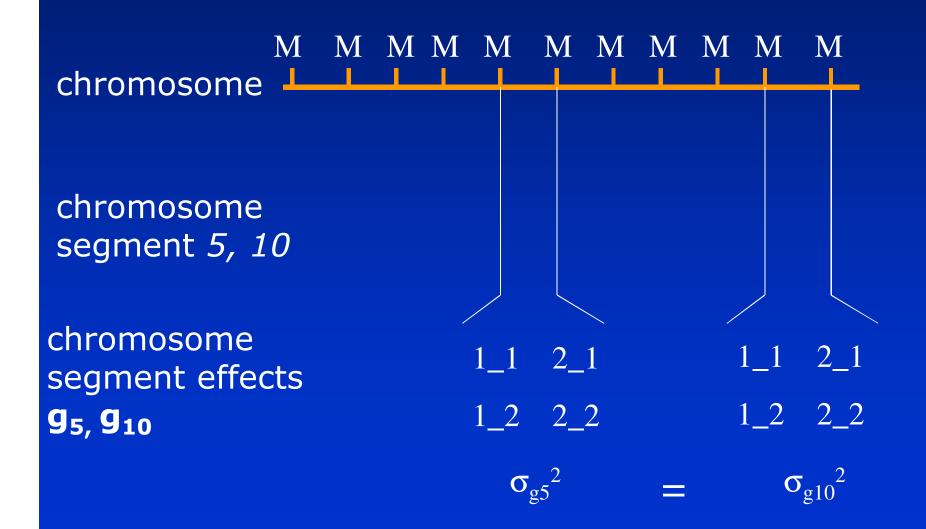


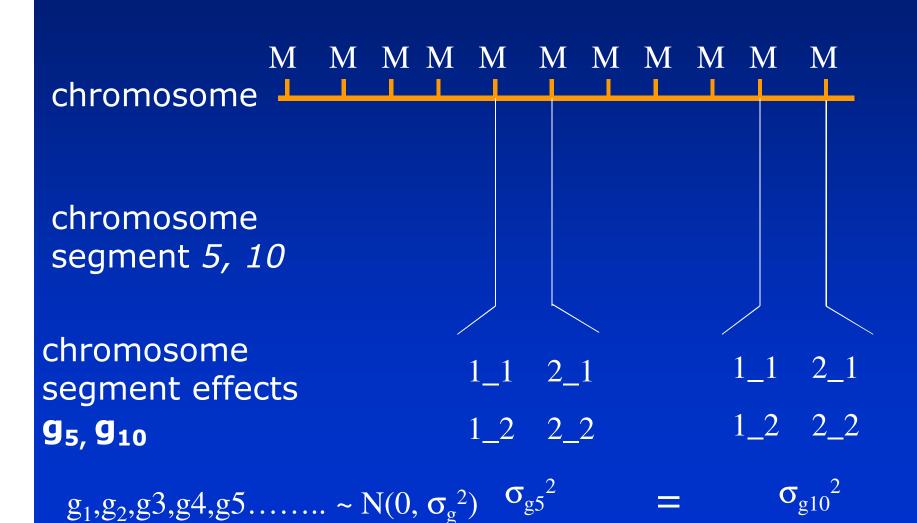
- The t distribution can be presented as a two level hierarchical model
- Allow different variances between chromosome segments
- Assume a distribution of these variances
- Computationally easier to deal with than original form

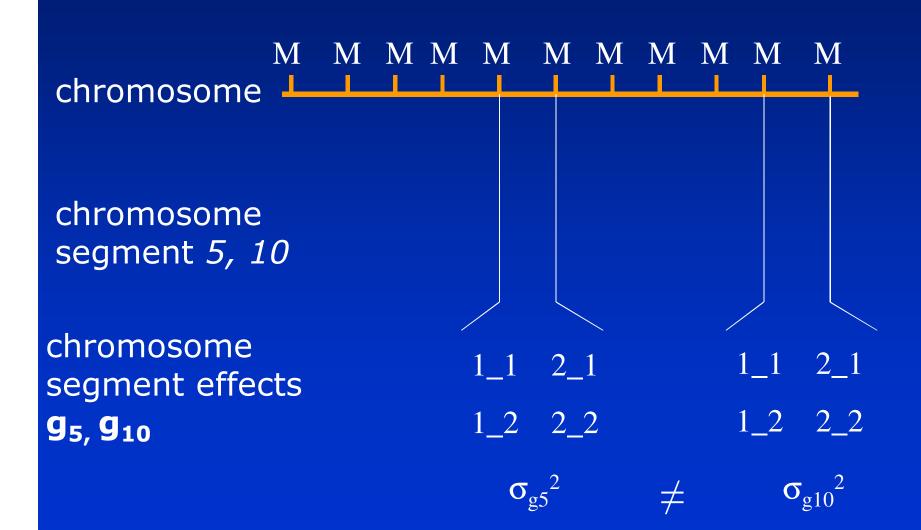


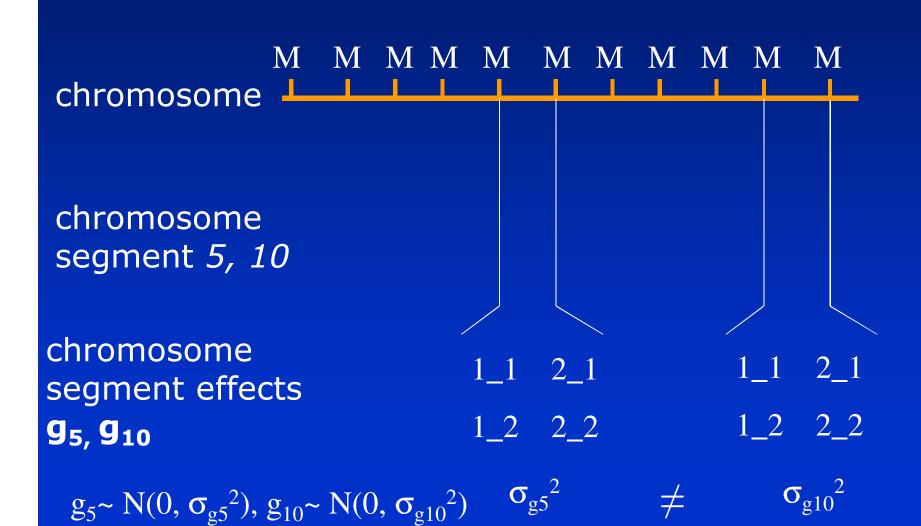








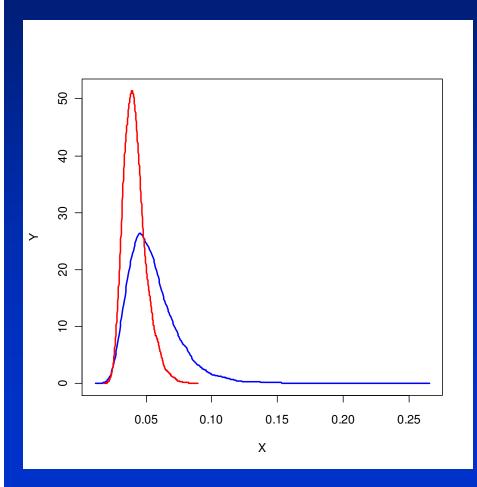


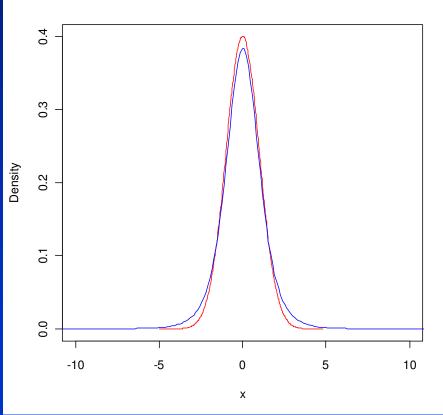


 Now lets allow different variances of chromosome segment effects

$$\begin{bmatrix} \mathring{\mu} \\ \mathring{\mathbf{g}}_{1} \\ \vdots \\ \mathring{\mathbf{g}}_{p} \end{bmatrix} = \begin{bmatrix} \mathbf{1}_{\mathbf{n}}'\mathbf{1}_{\mathbf{n}} & \mathbf{1}_{\mathbf{n}}'\mathbf{X}_{1} & \cdot & \mathbf{1}_{\mathbf{n}}'\mathbf{X}_{\mathbf{p}} \\ \mathbf{X}_{1}'\mathbf{1}_{\mathbf{n}} & \mathbf{X}_{1}'\mathbf{X}_{1} + \mathbf{I}\frac{\sigma_{e}^{2}}{\sigma_{g1}^{2}} & \cdot & \mathbf{X}_{1}'\mathbf{X}_{\mathbf{p}} \\ \vdots \\ \mathbf{X}_{p}'\mathbf{1}_{\mathbf{n}} & \mathbf{X}_{p}'\mathbf{X}_{1} & \cdot & \mathbf{X}_{p}'\mathbf{X}_{p} + \mathbf{I}\frac{\sigma_{e}^{2}}{\sigma_{gp}^{2}} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{1}_{n}'y \\ \mathbf{X}_{1}'y \\ \vdots \\ \mathbf{X}_{p}'y \end{bmatrix}$$

Distribution of σ_{gj}^2 \longrightarrow Distribution of g_j





- Now lets allow different variances of chromosome segment effects
- Need two levels of models
 - Data

$$P(\mathbf{g}, \mu \mid y) \propto P(y \mid \mathbf{g}, \mu) P(\mathbf{g}, \mu)$$

Variances of chromosome segment effects

$$P(\sigma_{gi}^2 \mid g_i) \propto P(g_i \mid \sigma_{gi}^2) P(\sigma_{gi}^2)$$

- Now lets allow different variances of chromosome segment effects
- Data

$$P(\mathbf{g}, \mu \mid y) \propto P(y \mid \mathbf{g}, \mu) P(\mathbf{g}, \mu)$$

$$\begin{bmatrix} \hat{\mu} \\ \hat{\mathbf{g}}_{1} \\ \vdots \\ \hat{\mathbf{g}}_{p} \end{bmatrix} = \begin{bmatrix} \mathbf{1}_{n}'\mathbf{1}_{n} & \mathbf{1}_{n}'\mathbf{X}_{1} & \cdot & \mathbf{1}_{n}'\mathbf{X}_{p} \\ \mathbf{X}_{1}'\mathbf{1}_{n} & \mathbf{X}_{1}'\mathbf{X}_{1} + \mathbf{I}\frac{\sigma_{e}^{2}}{\sigma_{g1}^{2}} & \cdot & \mathbf{X}_{1}'\mathbf{X}_{p} \\ \vdots \\ \mathbf{X}_{p}'\mathbf{1}_{n} & \mathbf{X}_{p}'\mathbf{X}_{1} & \cdot & \mathbf{X}_{p}'\mathbf{X}_{p} + \mathbf{I}\frac{\sigma_{e}^{2}}{\sigma_{gp}^{2}} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{1}_{n}'y \\ \mathbf{X}_{1}'y \\ \vdots \\ \mathbf{X}_{p}'y \end{bmatrix}$$

Variances of chromosome segments

$$P(\sigma_{gi}^2 \mid g_i) \propto P(g_i \mid \sigma_{gi}^2) P(\sigma_{gi}^2)$$

- Note that these variance components are not the parameters of interest
- However they are useful intermediates to arrive at better inferences for the g_i
- Amount of shrinkage of effects varies between segments

Variances of chromosome segments

$$P(\sigma_{gi}^2 \mid g_i) \propto P(g_i \mid \sigma_{gi}^2) P(\sigma_{gi}^2)$$

- Prior?
 - Inverted chi square convenient for variances

- Prior?
 - Inverted chi square convenient for variances
 - An inverted chi square with v degrees of freedom and scaled by S², eg.

$$S^2/\chi_v^2$$

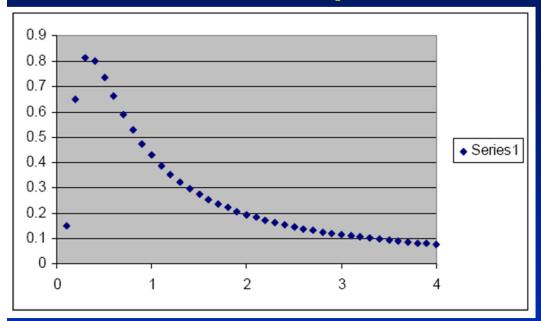
- Describes a distribution with
 - mean

$$vS^2/(v-2)$$

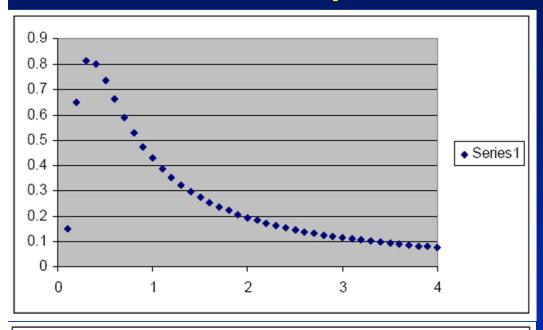
variance

$$\frac{2v^2S^4}{(v-2)^2(v-4)}$$

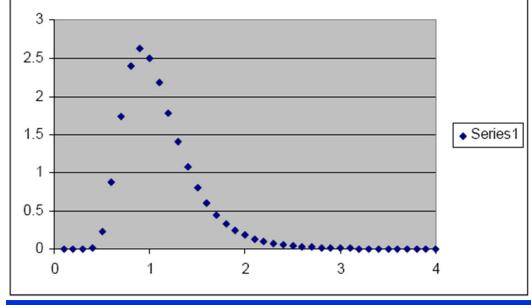
 Larger v, more informative prior = more belief about variance



$$\nu=2$$



$$\nu=2$$



$$\nu = 20$$

Variances of chromosome segments

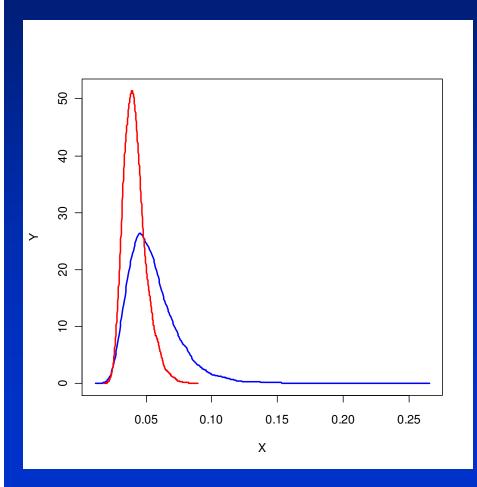
$$P(\sigma_{gi}^2 \mid g_i) \propto P(g_i \mid \sigma_{gi}^2) P(\sigma_{gi}^2)$$

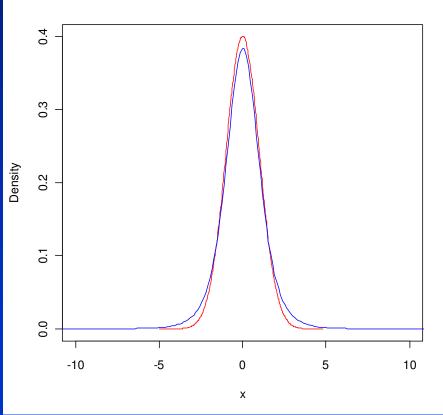
• Prior?

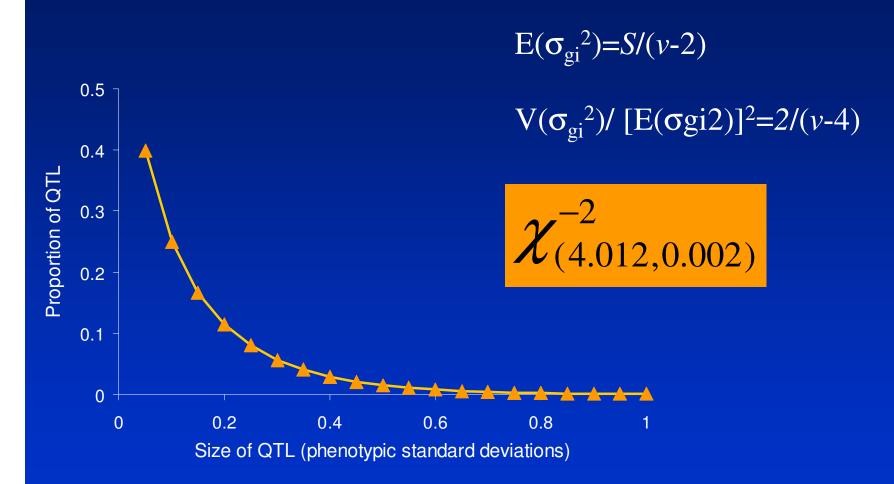
$$S^2/\chi_v^2$$

 We can choose v and S² so that the prior reflects our knowledge that there are many QTL of small effect and few of large effect

Distribution of σ_{gj}^2 \longrightarrow Distribution of g_j







Variances of chromosome segments

$$P(\sigma_{gi}^2 \mid \mathbf{g_i}) \propto P(\mathbf{g_i} \mid \sigma_{gi}^2) P(\sigma_{gi}^2)$$

- Posterior?
 - An advantage of choosing the inverse chi-square distribution for the prior is that the posterior will also be an inverse chi-square distribution
 - Degrees of freedom = prior + data
 - Scaling factor = sums of squares prior (S²) + sums of squares from data

Variances of chromosome segments

$$P(\sigma_{gi}^2 \mid \mathbf{g_i}) \propto P(\mathbf{g_i} \mid \sigma_{gi}^2) P(\sigma_{gi}^2)$$

- Posterior?
 - $n_i = number of haplotype effects$

$$\chi^{-2}_{(v+n_i,S^2+\mathbf{g_i'g_i})}$$

Variances of chromosome segments

$$P(\sigma_{gi}^2 \mid \mathbf{g_i}) \propto P(\mathbf{g_i} \mid \sigma_{gi}^2) P(\sigma_{gi}^2)$$

Posterior?

$$\chi^{-2}_{(4.012+n_i,0.002+\mathbf{g_i'g_i})}$$

 But posterior cannot be estimated directly, dependent on g_i!!

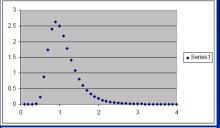
- Solution is to use Gibbs sampling
 - Draw samples from the posterior distributions of parameters conditional on all other effects
 - The average of these samples can be used as the estimates of the parameters

Gibbs sampling scheme

Parameters to estimate and their posteriors

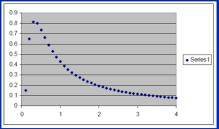
$$-P(\sigma_{gi}^2|g_i)$$

$$\chi^{-2}_{(4.012+n_i,0.002+\mathbf{g_i'g_i})}$$



$$-P(\sigma_e^2|\mathbf{e})$$

$$\chi_{(n-2,\mathbf{e}'\mathbf{e})}^{-2}$$



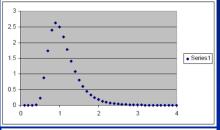
$$-P(\mu|\mathbf{y},\mathbf{e},\mathbf{g},\sigma_{\epsilon}^{2}) N\left(\frac{1}{n}(\mathbf{1}_{\mathbf{n}}^{'}\mathbf{y}-\mathbf{1}_{\mathbf{n}}^{'}\mathbf{X}\mathbf{g}),\sigma_{\epsilon}^{2}/n\right)$$

$$-P(g_{ij}|y,\mu,g\neq ij,\sigma_{gi}^{2},\sigma_{e}^{2})\sqrt{\frac{X_{ij}^{'}y-X_{ij}^{'}X_{g_{ij}0}-X_{ij}^{'}I_{n}\mu}{X_{ij}^{'}X_{ij}^{2}+\sigma_{e}^{2}/\sigma_{gi}^{2}}},\sigma_{e}^{2}/(X_{ij}^{'}X_{j}+\sigma_{e}^{2}/\sigma_{gi}^{2})$$

- Gibbs sampling scheme
 - Parameters to estimate and their posteriors

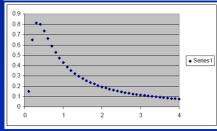
$$-P(\sigma_{gi}^2|g_i)$$

$$\chi_{(4.012+n_i,0.002+\mathbf{g_i'g_i})}^{-2}$$

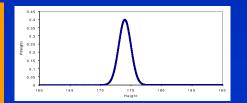


$$-P(\sigma_e^2|\mathbf{e})$$

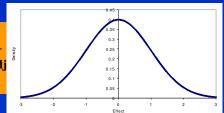
$$\chi_{(n-2,\mathbf{e}'\mathbf{e})}^{-2}$$



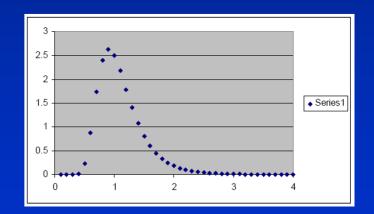
$$-P(\mu|\mathbf{y},\mathbf{e},\mathbf{g},\sigma_{\epsilon}^{2}) N\left(\frac{1}{n}(\mathbf{1}_{\mathbf{n}}^{'}\mathbf{y}-\mathbf{1}_{\mathbf{n}}^{'}\mathbf{X}\mathbf{g}),\sigma_{\epsilon}^{2}/n\right)$$



$$-P(g_{ij}|\mathbf{y},\mu,\mathbf{g}\neq ij,\sigma_{gi}^{2},\sigma_{e}^{2})\sqrt{\frac{X_{ij}^{2}-X_{ij}^{2}X_{g_{ij}}-X_{ij}^{2}I_{n}^{\mu}}{X_{ij}^{2}X_{ij}^{2}+\sigma_{e}^{2}/\sigma_{gi}^{2}}},\sigma_{e}^{2}\sqrt{X_{ij}^{2}X_{ij}^{2}+\sigma_{e}^{2}/\sigma_{gi}^{2}}$$



- The Gibbs chain
 - Step 1. Initialise value of \mathbf{g} , eg. \mathbf{g} =0.01 and μ , eg μ =0.01
 - Step 2. For each *i*, draw from $P(\sigma_{gi}^2|g_i)$



$$\chi_{(4.012+n_i,0.002+\mathbf{g_i'g_i})}^{-2}$$

The Gibbs chain

• $\sigma_{q1}^2 = 0.95$

- Step 1. Initialise value of \mathbf{g} , eg. $\mathbf{g} = 0.01$ and μ , eg $\mu = 0.01$
- Step 2. For each *i*, draw from $P(\sigma_{gi}^2|g_i)$



$$\chi_{(4.012+n_i,0.002+\mathbf{g_i'g_i})}^{-2}$$

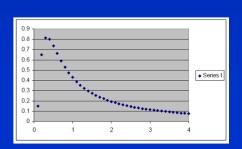
- The Gibbs chain
 - Step 1. Initialise value of ${\bf g}$, eg. ${\bf g}$ =0.01 and μ , eg μ =0.01
 - Step 2. For each *i*, draw from $P(\sigma_{gi}^2|g_i)$
 - -Step 3. Draw a sample from $P(\sigma_e^2|e)$ First calculate the **e** as

$$\mathbf{e} = \mathbf{y} - \mathbf{X}\mathbf{g} - \mathbf{1}_{n}^{'}\boldsymbol{\mu}$$

- The Gibbs chain
 - Step 1. Initialise value of $\bf g$, eg. $\bf g$ =0.01 and μ , eg μ =0.01
 - Step 2. For each i, draw from $P(\sigma_{gi}^2|g_i)$
 - -Step 3. Draw a sample from $P(\sigma_e^2|e)$ First calculate the **e** as

$$\mathbf{e} = \mathbf{y} - \mathbf{X}\mathbf{g} - \mathbf{1}_{n}^{'}\boldsymbol{\mu}$$

-Then sample...

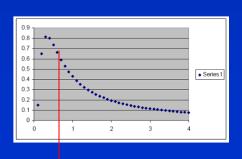


 $\chi_{(n-2,\mathbf{e}'\mathbf{e})}^{-2}$

- The Gibbs chain
 - Step 1. Initialise value of $\bf g$, eg. $\bf g$ =0.01 and μ , eg μ =0.01
 - Step 2. For each *i*, draw from $P(\sigma_{gi}^2|g_i)$
 - -Step 3. Draw a sample from $P(\sigma_e^2|e)$ First calculate the **e** as

$$\mathbf{e} = \mathbf{y} - \mathbf{X}\mathbf{g} - \mathbf{1}_n \boldsymbol{\mu}$$

- Then sample...



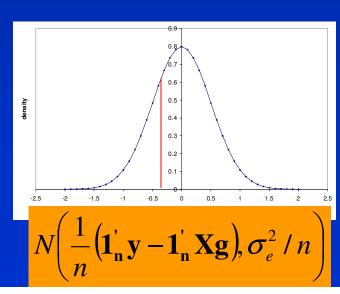
$$\chi_{(n-2,\mathbf{e}'\mathbf{e})}^{-2}$$

$$-\sigma_{\rm e}^2 = 0.5$$

- The Gibbs chain
 - Step 1. Initialise value of \mathbf{g} , eg. $\mathbf{g} = 0.01$ and μ , eg $\mu = 0.01$
 - Step 2. For each *i*, draw from $P(\sigma_{gi}^2|g_i)$
 - -Step 3. Draw a sample from $P(\sigma_e^2|e)$
 - Step 4. Draw a sample from $P(\mu|y,g,\sigma_e^2)$

- The Gibbs chain
 - Step 1. Initialise value of ${\bf g}$, eg. ${\bf g}$ =0.01 and μ , eg μ =0.01
 - Step 2. For each *i*, draw from $P(\sigma_{gi}^2|g_i)$
 - Step 3. Draw a sample from $P(\sigma_e^2|e)$
 - Step 4. Draw a sample from $P(\mu|y,g,\sigma_e^2)$

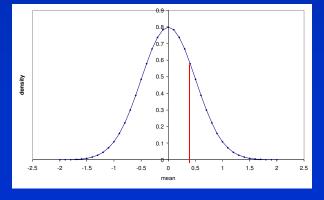
$$-\mu = -0.1$$



- The Gibbs chain
 - Step 1. Initialise value of ${\bf g}$, eg. ${\bf g}$ =0.01 and μ , eg μ =0.01
 - Step 2. For each *i*, draw from $P(\sigma_{gi}^2|g_i)$
 - Step 3. Draw a sample from $P(\sigma_e^2|e)$
 - Step 4. Draw a sample from $P(\mu|y,g,\sigma_e^2)$
 - Step 5. For each g_{ii}, draw from

 $P(g_{ij}|y,\mu,g,\sigma_{gi}^2,\sigma_e^2)$

$$-g_{11} = 0.5$$



- The Gibbs chain
 - Repeat steps 2-5 many times to build up samples from posterior distributions of the parameters

- The Gibbs chain
 - Repeat steps 2-5 many times to build up samples from posterior distributions of the parameters
 - Finally, take estimates of parameters as average over many cycles
 - Discard first ~ 100 cycles as dependent on starting values

Example

- Consider a data set with three markers. The data set was simulated as:
- the effect of a 2 allele at the first marker is 3, the effect of a 2 allele at the second marker is 0, and the effect of a 2 allele at the third marker was -2.
- the μ was 3
- $-\sigma_e^2$ was 0.23. The data set was:

• Example

Animal		Phenotype	Marker1 allele 1	Marker1 allele 2	Marker2 allele 1	Marker 2 allele 2	Marker3 allele 1	Marker 3 allele 2
	1	9.68		2	2	1	1	1
	2	5.69	2	2	2	2	2	2
	3	2.29	1	2	2	2	2	2
	4	3.42	1	1	2	1	1	1
	5	5.92	2	1	1	1	1	1
	6	2.82	2	1	2	1	2	2
	7	5.07	2	2	2	1	2	2
	8	8.92	2	2	2	2	1	1
	9	2.4	1	1	2	2	1	2
	10	9.01	2	2	2	2	1	1
	11	4.24		2	1	2	2	1
	12	6.35		2	1	1	1	2
	13	8.92		2	1	2	1	1
	14	-0.64	1	1	2	2	2	2
	15	5.95	2	1	1	1	1	1
	16	6.13		2	2	1	1	1
	17	6.72		1	2	1	1	1
	18	4.86		2	2	1	1	2
	19	6.36	2	2	2	2	2	2
	20	0.81	1	1	2	1	1	2
	21	9.67	2	2	1	2	1	1
	22	7.74		2	2	1	1	2
	23	1.45		1	2	2	2	1
	24	1.22		1	2	1	2	1
	25	-0.52	1	1	2	2	2	2

Example

- The Bayesian approach was applied, fitting single marker effects
- X matrix
 - Number of copies of two allele for each animal, eg. 2 1 0 for animal 1.

- The Gibbs chain
 - Step 1. Initialise value of \mathbf{g} , μ
 - g1=0.01, g2=0.01, g3=0.01, μ =0.1

- The Gibbs chain
 - Step 1. Initialise value of \mathbf{g} , μ
 - g1=0.01, g2=0.01, g3=0.01, μ =0.1
 - -Step 2. For i=1,2,3, draw from $P(\sigma_{qi}^2|g_i)$

$$\chi_{(4.012+n_i,0.002+\mathbf{g_i'g_i})}^{-2}$$

- The Gibbs chain
 - Step 1. Initialise value of \mathbf{g} , μ
 - g1=0.01, g2=0.01, g3=0.01, μ =0.1
 - Step 2. For i=1,2,3, draw from $P(\sigma_{qi}^2|g_i)$

$$\chi_{(4.012+1,0.002+0.001)}^{-2}$$

 $\bullet \sigma_{g1}^2 = 0.002, \sigma_{g2}^2 = 0.06, \sigma_{g3}^2 = 0.009$

- The Gibbs chain
 - Step 1. Initialise value of **g**, μ
 - g1=0.01, g2=0.01, g3=0.01, μ =0.1
 - Step 2. For i=1,2,3, draw from $P(\sigma_{gi}^2|g_i)$
 - $\bullet \sigma_{g1}^2 = 0.002, \sigma_{g2}^2 = 0.06, \sigma_{g3}^2 = 0.009$
 - Step 3. Draw a sample from $P(\sigma_e^2|e)$

$$\chi_{(n-2,\mathbf{e}'\mathbf{e})}^{-2}$$

$$\mathbf{e} = \mathbf{y} - \mathbf{X}\mathbf{g} - \mathbf{1}_n \boldsymbol{\mu}$$

- The Gibbs chain
 - Step 1. Initialise value of \mathbf{g} , μ
 - g1=0.01, g2=0.01, g3=0.01, μ =0.1
 - Step 2. For i=1,2,3, draw from $P(\sigma_{qi}^2|g_i)$
 - $\sigma_{q1}^2 = 0.002$, $\sigma_{q2}^2 = 0.06$, $\sigma_{q3}^2 = 0.009$
 - Step 3. Draw a sample from $P(\sigma_e^2|e)$

$$\chi^{-2}_{(23,812.031)}$$

•
$$\sigma_e^2 = 53.38$$

- The Gibbs chain
 - Step 1. Initialise value of **g**, μ
 - g1=0.01, g2=0.01, g3=0.01, μ =0.1
 - Step 2. For i=1,2,3, draw from $P(\sigma_{qi}^2|g_i)$
 - $\sigma_{a1}^2 = 0.002$, $\sigma_{a2}^2 = 0.06$, $\sigma_{a3}^2 = 0.009$
 - Step 3. Draw a sample from $P(\sigma_e^2|e)$
 - $\sigma_e^2 = 53.38$
 - Step 4. Draw a sample from $P(\mu|y,g,\sigma_e^2)$

$$N\left(\frac{1}{n}\left(\mathbf{1}_{n}'\mathbf{y}-\mathbf{1}_{n}'\mathbf{X}\mathbf{g}\right),\sigma_{e}^{2}/n\right)$$
• μ =3.25

•
$$\mu = 3.25$$

- The Gibbs chain
 - Step 1. Initialise value of **g**, μ
 - g1=0.01, g2=0.01, g3=0.01, μ =0.1
 - Step 2. For i=1,2,3, draw from $P(\sigma_{qi}^2|g_i)$
 - $\sigma_{a1}^2 = 0.002$, $\sigma_{a2}^2 = 0.06$, $\sigma_{a3}^2 = 0.009$
 - Step 3. Draw a sample from $P(\sigma_e^2|e)$
 - $\sigma_{e}^{2} = 53.38$
 - Step 4. Draw a sample from $P(\mu | y, g, \sigma_e^2)$
 - $\mu = 3.25$
 - Step 5. Draw a sample from

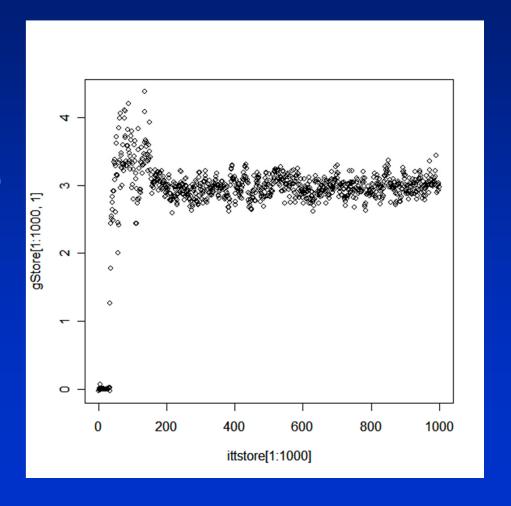
$$P(g_{ij}|y,\mu,\mathbf{g}\neq ij,\sigma_{gi}^2,\sigma_e^2)$$

$$P(g_{ij}|y,\mu,g \neq ij,\sigma_{gi}^{2},\sigma_{e}^{2}) \sqrt{\frac{X_{ij}Y - X_{ij}Xg_{ij\neq 0} - X_{ij}^{1}I_{n}\mu}{X_{ij}X_{ij} + \sigma_{e}^{2}/\sigma_{gi}^{2}}}, \sigma_{e}^{2}/(X_{ij}X_{ij} + \sigma_{e}^{2}/\sigma_{gi}^{2})}$$

- The Gibbs chain
 - Step 1. Initialise value of \mathbf{g} , μ
 - g1=0.01, g2=0.01, g3=0.01, μ =0.1
 - Step 2. For i=1,2,3, draw from $P(\sigma_{gi}^2|g_i)$
 - $\bullet \, \sigma_{g1}^2 = 0.002, \, \sigma_{g2}^2 = 0.06, \, \sigma_{g3}^2 = 0.009$
 - Step 3. Draw a sample from $P(\sigma_e^2|e)$
 - $\sigma_e^2 = 53.38$
 - Step 4. Draw a sample from $P(\mu|y,g, \sigma_e^2,e)$
 - $\mu = 3.25$
 - Step 5. Draw a sample from $P(g_{ij}|y,\mu,\mathbf{g}\neq ij,\sigma_{qi}^2,\sigma_e^2)$
 - \bullet g1=-0.02, g2=-0.81,g3=-0.005

• Gibbs chain for 1000 cycles

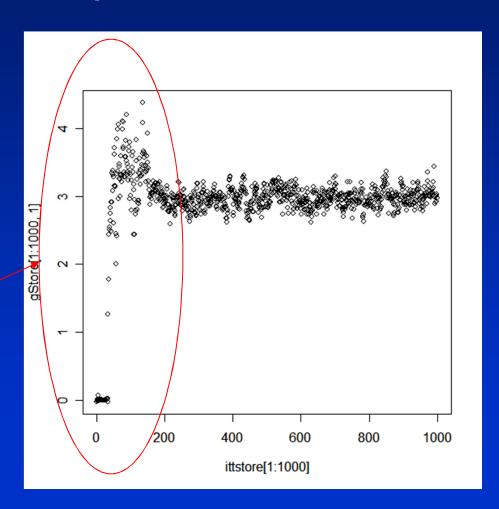
- $P(g_1|y,\mu,g \neq 1,\sigma_{g1}^2,\sigma_{e}^2)$



• Gibbs chain for 1000 cycles

- $P(g_1|y,\mu,g \neq 1,\sigma_{g1}^2,\sigma_{e}^2)$

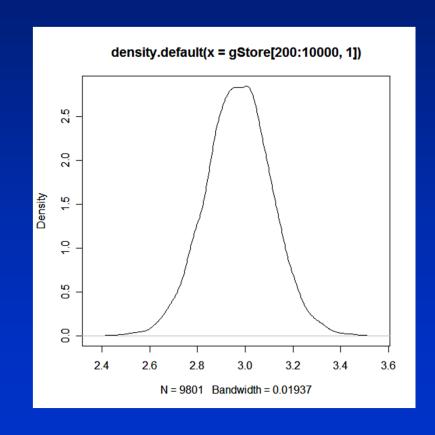
"Burn in"



Gibbs chain for 1000 cycles

- $P(g_1|y,\mu,g \neq 1,\sigma_{g1}^2,\sigma_{e}^2)$

$$g_1 = 2.97$$

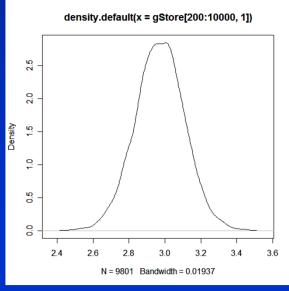


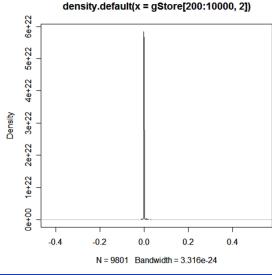
• Gibbs chain for 1000 cycles

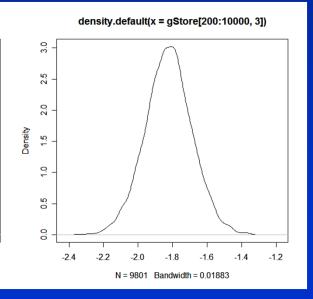
$$g_1 = 2.97$$

$$g_2 = 0.002$$

$$g_1$$
 = -1.81





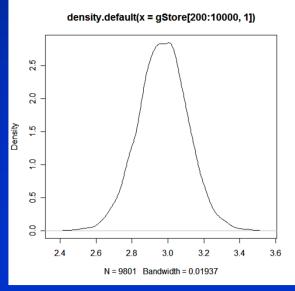


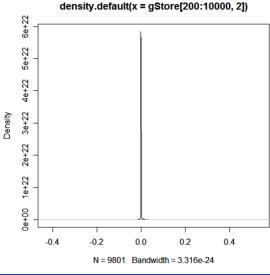
Vector of SNP effects for calculating GEBV

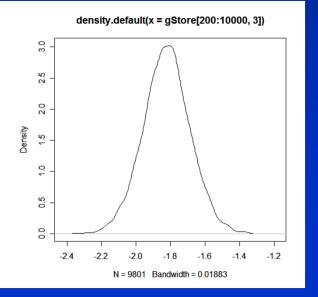
$$g_1 = 2.97$$

$$g_2$$
 = 0.002

$$g_1 = -1.81$$







- Alternative priors for variance of segment haplotype/snp effects
 - Meuwissen BayesA

$$\chi_{(4.012,0.002)}^{-2}$$

$$\chi_{(4.012,0.002)}^{-2} \chi_{(4.012+n_i,0.002+\mathbf{g_i'g_i})}^{-2}$$

- Xu (2003)
 - Uninformative

$$\chi_{(0,0)}^{-2}$$

$$\chi_{(1,\mathbf{g}'\mathbf{g})}^{-2}$$

- Te Braak (2006)

$$p(\boldsymbol{\sigma}_{gi}^2) \propto (\boldsymbol{\sigma}_{gi}^2)^{-1+\alpha}$$

$$g_i'g_i/\chi_{1-2a}^{-2}$$

Meuwissen BayesB

$$\sigma_{gi}^2 = 0$$
 with probability π ,
$$\sigma_{gi}^2 \sim \chi^{-2}(\nu, S) \text{ with probability } (1 - \pi),$$

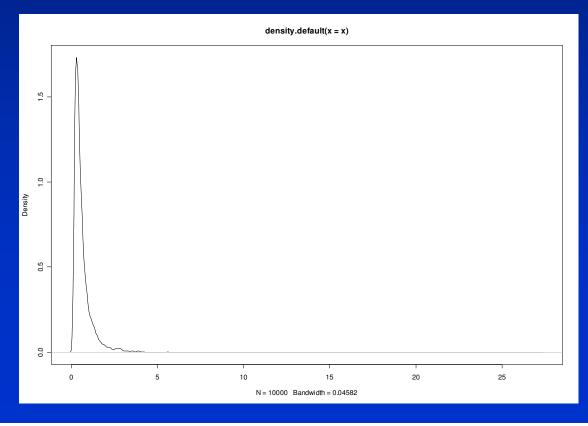
Meuwissen BayesB

- BayesA prior information is many QTL with small effects and few with moderate effects
- But we have more prior knowledge than this – some chromosome segments will have no effect at all (contain no QTL)
 - $\sigma_{gi}^2 = 0, g_i = 0$
- How to sample from the posterior?

```
\sigma_{gi}^2 = 0 with probability \pi,
\sigma_{gi}^2 \sim \chi^{-2} (\nu, S) with probability (1 - \pi)
     2000
                                             10
                                                    15
```

- Meuwissen BayesB
 - If we sample σ_{gi}^2 from $\chi_{(4.012+n_i,0.002+\mathbf{g_i'g_i})}^{-2}$

- We will never sample 0, as the distribution has no mass at zero.



- Meuwissen BayesB
 - If we sample σ_{gi}^2 from $\chi_{(4.012+n_i,0.002+g_i'g_i)}^{-2}$
 - We will never sample 0 if $g_i'g_i>0$, as the distribution has no mass at zero.
 - But if $\sigma_{gi}^2 > 0$, then sampling $g_i = 0$ has infinitesimal (basically zero) probability

- Meuwissen BayesB
 - Solution: sample σ_{gi}^2 , g_i simultaneously from the distribution:

$$p(\sigma_{gi}^2, g_i | y^*) = p(\sigma_{gi}^2 | y^*) \times p(g_i | \sigma_{gi}^2, y^*)$$

We want to sample from this

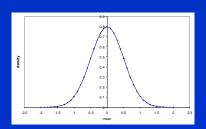
Can do it by sampling from these two distributions

- Meuwissen BayesB
 - Solution: sample σ_{gi}^2 , g_i simultaneously from the distribution:

$$p(\sigma_{gi}^{2}, g_{i} | y^{*}) = p(\sigma_{gi}^{2} | y^{*}) \times p(g_{i} | \sigma_{gi}^{2}, y^{*})$$

We want to sample from this

$$P(g_i|y,\mu,g,\sigma_{gi}^2,\sigma_e^2)$$



- Meuwissen BayesB
 - Solution: sample σ_{gi}^2 , g_i simultaneously from the distribution:

$$p(\sigma_{gi}^{2}, g_{i} | y^{*}) = p(\sigma_{gi}^{2} | y^{*}) \times p(g_{i} | \sigma_{gi}^{2}, y^{*})$$

??

Sample σ_{qi}^2 without conditioning on g_i

- Meuwissen BayesB
 - Solution: sample σ_{gi}^2 , g_i simultaneously from the distribution:

$$p(\sigma_{gi}^{2}, g_{i} | y^{*}) = p(\sigma_{gi}^{2} | y^{*}) \times p(g_{i} | \sigma_{gi}^{2}, y^{*})$$

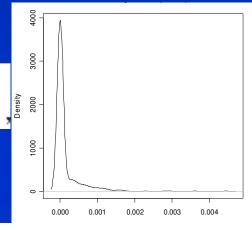
- Cannot be expressed as a known distribution = cannot use Gibbs for this bit
- Use a Metropolis Hastings algorithm

- Meuwissen BayesB
 - Solution: sample σ_{gi}^2 , g_i simultaneously from the distribution:

$$p(\sigma_{gi}^2, g_i | y^*) = p(\sigma_{gi}^2 | y^*) \times p(g_i | \sigma_{gi}^2, y^*)$$

-Step1 Sample $\sigma_{g_{new}}^2$, from prior $(\sigma_{g_{new}}^2)$

$$\sigma_{gi}^2 = 0$$
 with probability π ,
 $\sigma_{gi}^2 \sim \chi^{-2}(\nu, S)$ with probability $(1 - \pi)$,

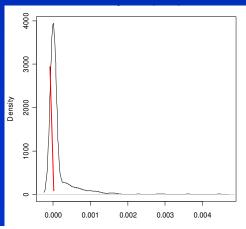


- Meuwissen BayesB
 - Solution: sample σ_{gi}^2 , g_i simultaneously from the distribution:

$$p(\sigma_{gi}^2, g_i | y^*) = p(\sigma_{gi}^2 | y^*) \times p(g_i | \sigma_{gi}^2, y^*)$$

- Step1 Sample $\sigma_{g_{new}^2}$, from prior $(\sigma_{g_{new}^2})$

$$-\sigma_{g_new}^2=0$$

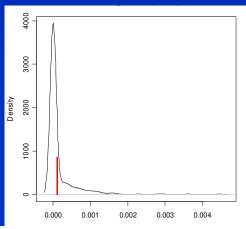


- Meuwissen BayesB
 - Solution: sample σ_{gi}^2 , g_i simultaneously from the distribution:

$$p(\sigma_{gi}^2, g_i | y^*) = p(\sigma_{gi}^2 | y^*) \times p(g_i | \sigma_{gi}^2, y^*)$$

- Step1 Sample $\sigma_{g_{new}^2}$, from prior $(\sigma_{g_{new}^2})$

$$-\sigma_{g_new}^2=0.5$$



- Meuwissen BayesB
 - Solution: sample σ_{gi}^2 , g_i simultaneously from the distribution:

$$p(\sigma_{gi}^2, g_i | y^*) = p(\sigma_{gi}^2 | y^*) \times p(g_i | \sigma_{gi}^2, y^*)$$

- Step 1 Sample $\sigma_{q \text{ new}}^2$, from prior $(\sigma_{q \text{ new}}^2)$
- Step 2 Evaluate $p(y^* | \sigma_{g \text{ new}}^2)$ (Likelihood)

$$L(\mathbf{y}^* | \sigma_{ginew}^2 = \frac{1}{2\pi^{1/2n} |\mathbf{V}|^{1/2}} e(-0.5*(\mathbf{y}^* | \mathbf{V}^{-1} \mathbf{y}^*)) \quad \mathbf{V} = \mathbf{X} (\mathbf{I} \sigma_{ignew}^2) \mathbf{X}' + \mathbf{I} \sigma_{\mathbf{e}}^2)$$

$$\mathbf{V} = \mathbf{X}(\mathbf{I}\boldsymbol{\sigma}_{ignew}^2)\mathbf{X'} + \mathbf{I}\boldsymbol{\sigma}_{\mathbf{e}}^2)$$

- Meuwissen BayesB
 - Solution: sample σ_{gi}^2 , g_i simultaneously from the distribution:

$$p(\sigma_{gi}^2, g_i | y^*) = p(\sigma_{gi}^2 | y^*) \times p(g_i | \sigma_{gi}^2, y^*)$$

- Step 1 Sample $\sigma_{g_{new}}^2$, from prior $(\sigma_{g_{new}}^2)$
- Step 2 Evaluate $p(y^* | \sigma_{g_{new}}^2)$ (Likelihood)
- Step 3 Replace σ_{gi}^2 with $\sigma_{g_new}^2$ probability min[p(y*| $\sigma_{g_new}^2$)/ p(y*| σ_{gi}^2):1]

- Meuwissen BayesB
 - Solution: sample σ_{gi}^2 , g_i simultaneously from the distribution:

$$p(\sigma_{gi}^2, g_i | y^*) = p(\sigma_{gi}^2 | y^*) \times p(g_i | \sigma_{gi}^2, y^*)$$

- Step 1 Sample $\sigma_{g_{new}}^2$, from prior $(\sigma_{g_{new}}^2)$
- Step 2 Evaluate $p(y^* | \sigma_{g_{new}}^2)$ (Likelihood)
- Step 3 Replace σ_{gi}^2 with $\sigma_{g_new}^2$ probability min[p(y*| $\sigma_{g_new}^2$)/ p(y*| σ_{gi}^2):1]
- Step 4 Repeat ∼ 100 cycles

- Introduction
- Genomic selection with Least Squares and BLUP
- Introduction to Bayesian methods
- Genomic selection with Bayesian methods
- Comparison of accuracy of methods

- Comparison of accuracy of methods (Meuwissen et al. 2001)
 - Genome of 1000 cM simulated, marker spacing of 1 cM.
 - Markers surrounding each 1-cM region combined into haplotypes.
 - Due to finite population size (Ne = 100), marker haplotypes were in linkage disequilibrium with QTL between markers.
 - Effects of haplotypes predicted in one generation of 2000 animals
 - Breeding values for progeny of these animals predicted based on marker genotypes

 Comparison of accuracy of methods (Meuwissen et al. 2001)

$$r_{\text{TBV;EBV}} + \text{SE } b_{\text{TBV.EBV}} + \text{SE}$$

LS $0.318 \pm 0.018 \ 0.285 \pm 0.024$

BLUP $0.732 \pm 0.030 \ 0.896 \pm 0.045$

BayesA 0.798 0.827

BayesB 0.848 + 0.012 0.946 + 0.018

- Comparison of accuracy of methods (Meuwissen et al. 2001)
 - The least squares method does very poorly, primarily because the haplotype effects are over-estimated.

- Comparison of accuracy of methods (Meuwissen et al. 2001)
 - The least squares method does very poorly, primarily because the haplotype effects are over-estimated.
 - Increased accuracy of the Bayesian approach because method sets many of the effects of the chromosome segments close to zero in BayesA, or zero in BayesB

- Comparison of accuracy of methods (Meuwissen et al. 2001)
 - The least squares method does very poorly, primarily because the haplotype effects are over-estimated.
 - Increased accuracy of the Bayesian approach because method sets many of the effects of the chromosome segments close to zero in BayesA, or zero in BayesB
 - Also "shrinks" estimates of effects of other chromosome segments based on a prior distribution of QTL effects.

- Comparison of accuracy of methods (Meuwissen et al. 2001)
 - The least squares method does very poorly, primarily because the haplotype effects are over-estimated.
 - Increased accuracy of the Bayesian approach because method sets many of the effects of the chromosome segments close to zero in BayesA, or zero in BayesB
 - Also "shrinks" estimates of effects of other chromosome segments based on a prior distribution of QTL effects.
 - Accuracies were very high, as high as following progeny testing for example

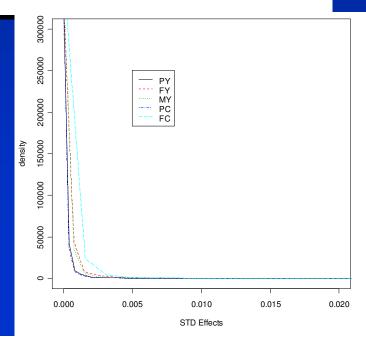
- 1500 Australian dairy bulls
- genotyped for 56000 genome wide SNPs
- Phenotypes average of daughters milk production

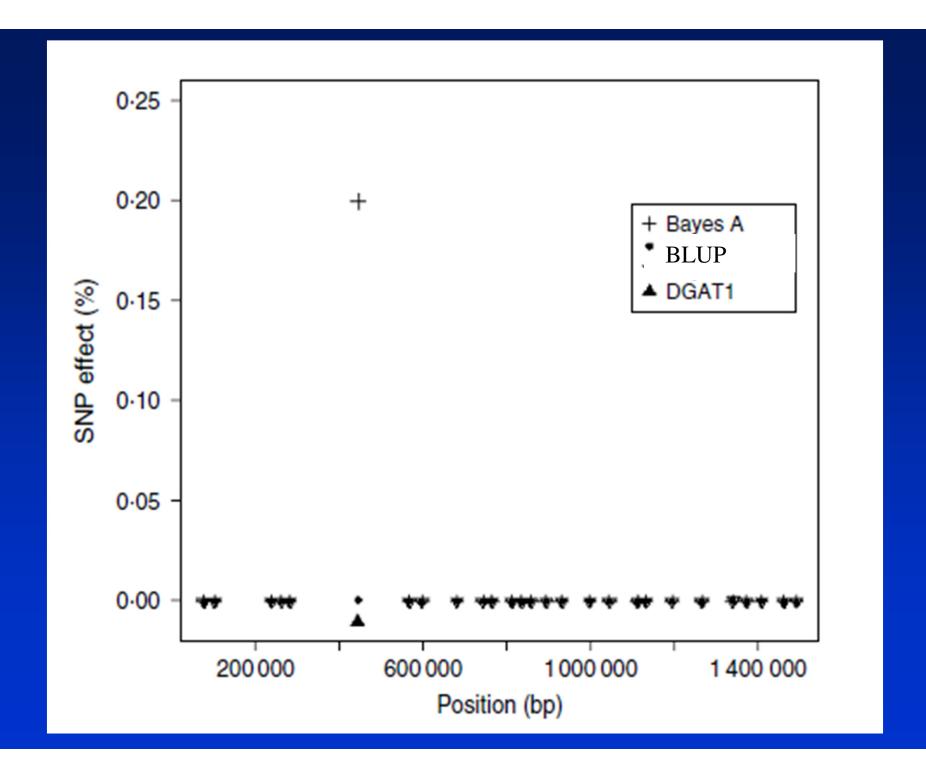
- Split data into two sub-populations
 - Reference: Bulls born < 2003
 - Validation: Bulls born >= 2003

- Split data into two sub-populations
 - Reference: Bulls born < 2003</p>
 - Validation: Bulls born >= 2003
- Accuracy
 - Correlation of genomic breeding values with EBVs (which include daughter information) in validation set

Table 3 MEBV- Correlation between predicted MEBV and ABV in the validation data set (Bulls proven in years 2005, 2006, 2007)

Method	Protein kg	Fat kg	Protein %	Fat %
Bayes B	0.55	0.51	0.68	0.73
Bayes A	0.53	0.48	0.66	0.70
BLUP	0.60	0.48	0.66	0.64





- Yi and Xu 2008 (Genetics)
- Sample from inverse chi square distribution, but then sample shape (v) and scale (S²) of the distribution
 - Reflect absence of knowledge of distribution of QTL effects?
 - Prior on S² is uniform, then posterior is gamma

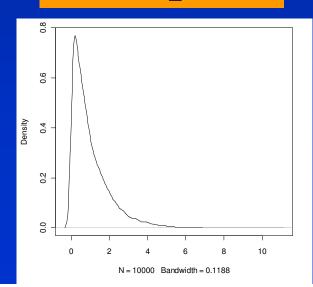
$$S^2 \mid y, \mu, \beta, \sigma^2, v \sim gamma \left(\frac{pv}{2}, \frac{v}{2} \sum_{j=1}^p \frac{1}{\sigma_{gj}^2} \right)$$

 Prior on v of 1/v, not a conjugate prior = metropolis hastings

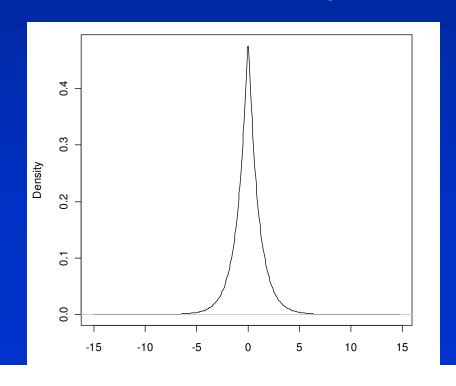
- Yi and Xu 2008 (Genetics)
- Propose sampling σ_{gi}^2 from an exponential distribution (Bayesian LASSO)

Distribution of σ_{gj}^2

$$P(\sigma_{gi}^2) \sim \frac{\lambda}{2} e^{-\lambda \sigma_{gi}^2/2}$$



Distribution of g_i



- Bayesian LASSO
 - $-P(\sigma_{gi}^2|g_i)$

$$\sigma_{j}^{2} \mid y, \mu, g, \sigma_{e}^{2}, \lambda^{2} \sim InvGauss(\sqrt{\frac{\lambda^{2}\sigma_{e}^{2}}{g_{j}^{2}}}, \lambda^{2})$$

 $-P(\lambda^2|y,\mu,g,\sigma_e^2,\sigma_g^2)$

$$\lambda^{2} \mid y, \mu, g, \sigma_{e}^{2}, \sigma_{j}^{2} \sim gamma(p + a, \sum_{j=1}^{p} \sigma_{j}^{2} / 2 + b)$$

• Bayesian C_∏ (Habier et al 2011)

- Two criticisms of BayesB
 - Posterior of locus-specific variance has only one additional degree of freedom, compared to its prior regardless of the number of genotypes, so
 - Degree of shrinkage of depends strongly on prior
 - Little information coming from data
 - ∏ is treated as known, not estimated from the data

- Bayesian C_∏ (Habier et al 2011)
- Use a common σ_{qi}^2 across all SNP
 - Many degrees of freedom from data
 - A "BLUP" for SNP in model
- Estimate ∏ from data
 - Sample from
 - Beta(K m(t) + 1, m(t) + 1).
 - Where K is number of SNP, m(t) is the number of SNP in the model at iteration t (eg. Those not set to zero)

- Bayesian C_∏ (Habier et al 2011)
 - Accuracy in German Holstein Friesian data set

Trait	GBLUP	BayesA	BayesB	BayesCpi
Milk Yield	0.48	0.48	0.40	0.43
Fat Yield	0.51	0.56	0.52	0.54
Protein Yield	0.21	0.22	0.17	0.21
Somatic cells	0.17	0.17	0.12	0.14

- Little improvement in accuracy
- But can draw inferences about trait architecture?

- Methods for deriving prediction equation differ in assumptions about distribution of QTL effects
 - BLUP = normal distribution with known variance
 - Ridge regression = normal distribution with prior assumption about variance
 - BayesA = t-distribution, degree of shrinkage known apriori, or sampled
 - BayesB = mixture distribution, many effects zero
 - BayesianLASSO, double exponential distribution of effects
 - Bayesian C_∏, estimate ∏ from data, common variance across SNP