

Joint association and linkage QTL mapping in (full) and halfsib families by regression

(Theory: Legarra A & Fernando R.L, GSE 2009)

Association mapping

- The principle of association mapping is that we can predict the QTL state from the marker state in a close marker
 - (at the population level, i.e., "linkage disequilibrium")
- Now, what do we do with related animals?

Inconvenients

- We lost nice properties of regression methods (speed, flexibility)
 - Can't do: Bootstrap CI, Permutation tests
- IBD matrix rather tricky
 - Need "bending" or "clustering"
- Big IBD matrix (4n²)

Regression

- Regression is a crude but efficient alternative to mixture models
- Regression is based on conditional expectations
 - Expectation for the founders
 - Expectation for the offspring
- We reason for two-marker haplotypes but formulae are identical for any size of haplotypes
- I will make the presentation for half-sib families but full-sib families are an immediate extension
- There is also a mixed-model version for general pedigrees but it has never been programmed

LDdecay → QTLMAP "LD"

• LDLA \rightarrow QTLMAP "LDLA"

- If there is strong LD (and a QTL segregating) we hope that QTL alleles carried by haplotypes "AA" or "BB" are very different
 - We can simply postulate an effect of AA and another of BB
- This is a regression of phenotype on haplotype state (haplotype association analysis)

$$y_1 = b_{AA} + b_{BB} + e_1$$
$$y_2 = 2b_{AA} + e_2$$

Non Founders

- The son 3 inherited the QTL at the "black chromosome" with probability *p*
- Or the QTL at "grey" with probability 1-p

$$y_{1} = b_{AA} + b_{BB} + e_{1}$$

$$y_{3} = pb_{AA} + (1 - p)b_{BB} + e_{3}$$

- The *p*'s use the linkage information and are computed using all available markers
- <u>We don't care</u> what haplotype son 3 is carrying, because we know the paternal QTL is one of his sire's

9

 "LDdecay" because it models the *decay* of *LD* in the founders through transmission probabilities *p*

Non Founders – maternal info

- The "barred" chromosome in 3 is the maternal one, and is carrier of haplotype AB
- Add its effect

$$y_{1} = b_{AA} + b_{BB} + e_{1}$$

$$y_{3} = pb_{AA} + (1 - p)b_{BB} + b_{AB} + e_{3}$$

- The chromosome from the dam also uses populational LD
- Lots of information

- We can't mix regressions for founders and sons because residual variances are not the same unless p =1 or 0
- But use for half-sib designs is straightforward (equation for y_3)
 - Families are tied together through b's

Example

Table 1: Pedigree and markers for the numerical example

animal	dam	sire	Maternal haplotype	Paternal haplotype
I	0	0	10	01
2	0	0	11	00
3	0	0	01	11
4	I.	2	10	00
5	3	2	01	
6 ≻ ν	3	2	01	Recombination 🔿 💷
7 3	4	5	00	11
8	4	5	00	01

• Regression model LDdecay y = Tb + e

• LDdecay \rightarrow QTLMAP "LD"

• LDLA \rightarrow QTLMAP "LDLA"

LDLA

- What if sires' QTLs are different from what we expect based on haplotype?
- There will be a difference:

$$QTL_1 = b_{AA} + v_1$$
$$QTL_2 = b_{BB} + v_2$$

• We can include this in the regression equations

- We can't mix regressions for founders and sons because residual variances are not the same unless p =1 or 0
- But use for half-sib designs is straightforward (equation for y_3)
 - Families are tied together through b's

Example

Table I: Pedigree and markers for the numerical example

founder haplotype j

animal		da	m	sire			Ma	aternal hap	olotype		Paternal haplotype
I			0	0					10		01
2			0	0					11		00
3			0	0					01		11
4			I.	2					10		00
5			3	2					01		11
6	у		3	2					01		01
7	•		4	5					00		11
8			4	5					00		01
•	Regr	essi	on	moc	del L	Dde	cay <u>î</u>	y = T	' ₀b ⊣ ∕ ^{b₀₀∖}	$-T_vv +$	<i>e</i>
	$\binom{0.98}{0.02}$	0	1	0.02	0.02	0.98	0	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	$\begin{bmatrix} b_{01} \\ b_{10} \end{bmatrix}$		Haplotypes in
	0.02	1	0	0.90	0.90	0.02	0	0	<i>b</i> ₁₁	μ _. ι	
<i>y</i> =	0.50	1	0	0.50	0.50	0.50	0	0	12.	+e	
	1	0.02	0	0.98	0	0	0.02	0.98	v 2,1	Π	
	1	0.98	0	0.02	0	0	0.98	0.02/	$v_{2,2} \\ v_{5,1}$		Residual QTL
							Ŷ		v_{52}	ר וי	effects in the
Probability of individual <i>i</i> of										founders	
having inhorited the OTL in the					Probability of <i>i</i> of having						
				inherited the "residual" QTL in				17			

the founder chromosome

Caveat LDLA $y_{3} = pb_{A} + (1-p)b_{B} + b_{B} + pv_{1,1} + (1-p)v_{1,2} + e_{3}$ This is Haley-Knott LA This is This is "pure" LA Haley-Knott regression and LD maternal LD regression "LDdecay"

Caveat LDLA

- LDLA allows detecting linkage in absence of LD
- But not without complications
- If
 - « ν » effects are considered for sires and dams
 - and all founders are genotyped (including dams)
 - and founders have no record (e.g., full-sib designs)
 - then the LDLA regression is formally equivalent to the LA regression
- In this case it is better to use LDdecay

Extensions

- What if animals come from two populations?
 - E.g. Romane x Blackbelly BC
 - "BB" haplotype may not have the same effect in each breed
 - Need to define "within-breed" haplotype effects
 - C Moreno did it for QTLmap (e.g. Sallé et al. 2012)

Performance

- Simulation under several scenarios
 - 15 x 20 half-sib families, one big QTL, drift, 21 markers
 - It depends on the scenario, but generally all methods (LDdecay, Meuwissen's IBD) perform similarly
 - IBD method is slightly biased towards the center because it uses all markers (but this is implementation dependent)

23

Roldan et al. 2012

Conclusion & perspectives

- As good as other methods. Performance is more dependent on the scenario than on the method itself
 See Roldan et al. (Gen Res) for a more extensive evaluation
- The method is very simple to implement provided phases and probabilities of transmission can be computed
 - This is easy with SNP chips
 - Allows bootstrap confidence intervals & Permutation tests