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QTL DETECTION WITH GS3.  

A Legarra, 19/06/2013 

Hélène Gilbert simulated a data set with 2 chromosomes and 5 QTLs at positions 20 cL, 73.14 cM on 

chromosome 1 and 20, 33.24 and 59.60 in chromosome 2. Each chromosome has 1 Morgan=100cM. 

The last QTL is fixed after the generations so we will focus on the first four. These positions 

correspond to SNPs number 1000,3657,6000,6662, 7980. There are 5000 markers in the 1st 

chromosome and 4997 in the second. 

We know that the h2=0.3 and the total variance 33. 

The files are on dga12:/home/alegarraalb/QTL_gs3 and 

dga11:/home/alegarraalb/QTL_gs3 . 

Copy the whole folder: 

cp –r /home/alegarraalb/QTL_gs3 ./ 

Data reordering 

GS3 has a file format shared with blupf90 programs but different from the LDSO or QTLmap. I put 

here  a reminder of what I did to her original data files, but this must not be done in the exercise: 

Treatment data from LDSO: 

a) Reorder SNPs: 

alegarraalb@dga12:/prodanr/alegarraalb/QTL_gs3# ./ldso2gs3.awk 

genotypes1 > genotypes1.uga 

b) Add overall mean 

awk 'NR>1 {print 1,$0}' sim_ped_perf > sim_ped_perf_mean 

 

 

 

Data analysis 

 

Parameter files, variance components 

Using GS3 correctly needs a few steps before proceeding blindly to BayesCPi. The first one is to 

correctly set up the parameter files for a BLUP_SNP (or RR-BLUP, or GBLUP). 

We will include a model with an overall mean + SNPs. No pedigree. 

 

Rewrite  parameter file ldso_gs3_vce.par so that we use the correct variances. 

Total genetic variance = 33.2*0.3=10 

This variance has to be split among all the SNPs : 

Variance by SNP = vara =    
   

  

  ∑    
  

  

         
           

Residual variance=23 

Set varg, varp to 0. 

 

First I lance a VCE work to see if it estimates the correct variances: 
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./gs3_linux64bit_executable ldso_gs3_vce.par | tee ldso_gs3_vce.par.out 

 

After it has finished, I verify using R: 
> a=read.table("var",header=TRUE) 

> summary(a) 

      vara                vard        varg        varp           vare       

 Min.   :0.0004295   Min.   :0   Min.   :0   Min.   :2.15   Min.   :15.78   

 1st Qu.:0.0032457   1st Qu.:0   1st Qu.:0   1st Qu.:2.15   1st Qu.:18.25   

 Median :0.0036667   Median :0   Median :0   Median :2.15   Median :18.97   

 Mean   :0.0036349   Mean   :0   Mean   :0   Mean   :2.15   Mean   :19.08   

 3rd Qu.:0.0041041   3rd Qu.:0   3rd Qu.:0   3rd Qu.:2.15   3rd Qu.:19.82   

 Max.   :0.0055413   Max.   :0   Max.   :0   Max.   :2.15   Max.   :26.01   

      pa_1        pd_1     X2varapqpi            lambda2     

 Min.   :1   Min.   :1   Min.   : 1.094   0.18171-315:1000   

 1st Qu.:1   1st Qu.:1   1st Qu.: 8.269                      

 Median :1   Median :1   Median : 9.341                      

 Mean   :1   Mean   :1   Mean   : 9.260                      

 3rd Qu.:1   3rd Qu.:1   3rd Qu.:10.455                      

 Max.   :1   Max.   :1   Max.   :14.117                      

> plot(a$X2varapqpi) 

 

The plot shows that convergence is quite good. On the other hand, we find correct parameters. The 

genetic variance explained by all SNPs (“X2varapqpi”) is almost 10, as expected. 

Also, try to find in the output file ldso_gs3_vce.par.out several things: 

-sum(p_i q_i), the frequencies of the markers 

-how many polygenic markers 

-the description of the model and of the priors for variances 

 

BLUP_SNP 

Now that we are sure that everything is correct, we can run a BLUP_SNP ( also called RR-BLUP, 

GBLUP, etc) using parameter file ldso_gs3_blup.par . This is very fast. Then we can analyze the 

SNP solutions using R: 
> a=read.table("solutions",header=T) 

> summary(a) 

> snps=subset(a,effect==2) 

> plot(snps**) 

> plot(snps$solution**2) 

Apparently we can’t find the QTLs: 

points(1000,0,col="red",pch=19) 

points(3657,0,col="red",pch=19) 

points(6000,0,col="red",pch=19) 

points(6662,0,col="red",pch=19) 

 

 

BayesCPi 

Now we can do the same using BayesCPi. This is parameter file ldso_gs3_bayescpi.par 

For BayesCPi we need to fix the expected number of “causal” SNPs so that we will have a clear signal. 

A way to do this is to play with the prior distribution of this proportion. For instance we can set it to 

    (           ). This means that, on expectation,   
   

           
      , and the a priori 

variance of   is extremely small so that in practice is fixed to 0.001. 
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Then we need to explain that “all” the genetic variance is due to a small fraction of SNPs (1/1000), so 

the variance of each SNP effect must be larger by a factor of 1000. 

 

This will be:  

 vara=  10/( (1/1000)*  2*sum(p_i q_i) ) = 10*1000/(2*1273.75)=0.393  

Variance by SNP = vara =    
   

  

    ∑    
  

  

               
           

 

The parameter file has this modification and also the option “Use mixture TRUE “ to do BayesCPi. 

I usually put a number of iterations of at least 10 times the number of SNPs; and 20% of them of 

burn-in. The “thin” has no importance for QTL mapping but it is better to put  as thin interval 

(number of iterations)/1000 so we will have 1000 final samples of variance components (than one 

should check as before). 

Today, your number of iterations should be much less (e.g., 10000) to have time. 

 

 

Posterior analisis 

After running we get this graph (I used 100,000 iterations but with 10,000 the graph is similar): 
a=read.table("solutions ",header=T) 

col=rep(c("blue","green"),each=5000) 

 

# effects 

snps=subset(a,effect==2) 

plot(snps$solution**2,col=col) 

abline(v=1000,col="red") 

abline(v=3657,col="red") 

abline(v=6000,col="red") 

abline(v=6662,col="red") 

 

0 2000 4000 6000 8000 10000

0
.0

0
.5

1
.0

1
.5

Index

s
n
p
s
$
s
o
lu

ti
o
n
^2



4 
 

So we capture very well QTL3, almost the 2nd , and a “parasite” (?) signal associated to the 4th.  

We can also use “windows” of SNPs  to partition the variance into chunks of consecutive SNPs. This is 

the segment mapping of Perez-Enciso and Varona (2000) re-discovered by Haley and colleagues in 

Roslin recently (“local heritability”). 

It needs the allelic frequency of the SNPs, that is in file “freq” (created by GS3 as a byproduct). A 

script to plot this is in postBayesCPi.r , and it gives very similar graphs to the precedent one. 

 

 

An analysis with something similar to p-values uses the Bayes Factor. The posterior probability of a 

SNP to be “real” is in the solutions file, in column “p”. Values close to 1 indicate that a SNP is always 

in the model. To declare if a SNP is “real” or not we can use the Bayes Factor. This is the ratio of 

“posterior” to “prior” probability of a SNP to be in the model, and it is in this case: 
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in this case that the prior probabilities were 1 (of being included) to 999 (of being out). According to 

Vidal et al. (2005: http://www.journalofanimalscience.org/content/83/2/293.full), we choose this 

scale: 

BF= 3-20              "suggestive" 

BF= 20-150         "strong" 

BF>150                "very strong" 

 

The BF already accounts for multiple testing because we take all the SNPs at the same time. Let’s see 

the graph in logarithmic scale: 
# BF, logarithmic scale 

BF=999*a$p/(1-a$p) 

plot(log10(BF),col=col) 

abline(v=1000,col="red") 

abline(v=3657,col="red") 

abline(v=6000,col="red") 

abline(v=6662,col="red") 

# strong signal 

abline(h=log10(150),col="red") 

 

http://www.journalofanimalscience.org/content/83/2/293.full
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The horizontal bar is the BF>150 rejection threshold; there are 20 “Bayesianly significant” SNPs. The 

signal from QTL 2 and 3 is clearly captured. The signal in SNP 7138 is very strong yet there is no QTL 

there, this QTL might be in strong LD with the QTL. 
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