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Abstract  
Background 
Principal Components Analysis is a standard and computationally efficient method to explore 

large SNP data sets. We propose in this study additional interpretations of PCA results about 

the characterization of population genetic structure when dealing with SNP data. In particular, 

we evaluate how SNP typological values obtained from PCA are related to F-statistics and 

may help to identify footprints of selection. 

Results 
We show that a normed PCA on biallelic SNP haplotypes is equivalent to a Multiple 

Correspondence Analysis and to a PCA on the r correlation matrix, where r represent the 

signed square root of the r2 linkage disequilibrium measure. Each resulting principal 

component describes a typology and provides a measure of the underlying SNP contributions 

which may further be interpreted in terms of correlation ratio and variance reduction. In 

addition, PCA can be partitioned into sub-analyses (between-group, within-group). Between-

group PCA maximises the variance between groups and delivers principal components with 

maximum FST. Only per-group allele frequencies and relative frequencies are needed to 

compute between-group PCA. Finally, chromosomal regions containing SNPs with high 

contributions may be interpreted as footprints of selection. As an illustration of the approach 

we analyzed human chromosome 2 haplotypes sampled from three HapMap populations 

(from African, Asian and European origin). We showed that SNPs within or close to EDAR 

and LCT genes exhibit the highest typological values, in agreement with previous studies. 

Conclusions 
When applied to biallelic SNP data, our PCA based proposed approach enables to describe the 

genetic structuring of populations and to quantify for each typology the contributions of SNPs 

by FST statistics. Taking into account spatial dependences of SNPs allows in turn to identify 
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genomic regions contributing to the structuring of populations which might be interpreted as 

footprints of selection. Finally, this approach was proven computationally efficient since it 

can handle data including several hundreds of thousands SNPs within less than one hour on a 

standard computer. 

Background  
The availability of large numbers of SNPs uniformly distributed across the genome has 

provided opportunities to refine the analysis of population structuring of genetic diversity. 

The most commonly used methods are either model-based such as unsupervised hierarchical 

clustering approach [1] or exploratory such as principal component analysis (PCA) [2-6]. 

Unsupervised hierarchical clustering approaches have been widely used in population 

genetics studies because of the detailed information they provide on group membership and 

individual admixture. However these model-based approaches tend to be computationally 

intensive and are in practice not suited to the large numbers of markers present in genome-

wide data sets, even if new implementations are making the computational aspect less of a 

problem [7-9]. In that context, PCA and related descriptive methods are especially appealing 

since they are far less computationally demanding than other methods [3, 5]. PCA has been 

used to treat large SNP datasets, especially in human (e.g. [10-13]), but also more recently in 

cattle [14-16]. PCA has also been proposed to assess the extent of Linkage Disequilibrium 

(LD) groups and to identify sets of group tagging SNPs over the genome [17, 18]. This latter 

PCA is performed on the matrix of SNP-pairwise ∆ measures, also know as r, and 

corresponding to the signed square root of the r2 LD measure [19]. More generally, whether 

the focus is on variables (i.e. SNPs) or individuals, PCA may address two different questions 

either relative to the relationships among SNPs or the genetic structuring of populations. Such 

double functionality has been formalized through the duality diagram theory [20, 21].  
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Studies focusing on relationships among markers mainly concentrate on two objectives. First, 

PCA was proven powerful to reduce the complexity of the data sets, thereby facilitating data 

visualisation and storage requirements [22], in particular via some extensions such as sparse 

PCA, Lasso and Elastic Net [23, 24]. Paschou and collaborators [25] demonstrated that small 

subsets of PCA based selected SNPs succeeded in assigning individuals to particular 

populations. Hence, the number of SNPs for ancestry inference could be successfully reduced 

to less than 0.1% while retaining close to 100% accuracy in the Human Genome Diversity 

Panel data set [26]. Second, PCA and related methods provide measures of contribution of 

markers to the genetic structuring of populations [4, 27]. When combined to a discriminant 

analysis, as first proposed by [28], PCA also allows to measure the contributions of individual 

alleles to the discrimination between populations [29]. 

Our study is in line with this second objective and capitalizes on the features of biallelic SNP 

data in subdivided populations to propose new interpretations of PCA from both a statistical 

and a genetic point of view. From a statistical point of view, we show that the equivalence 

between PCA (when applied to dichotomous factors) and multiple correspondence analysis 

(MCoA), the method of reference to deal with multiple contingency tables [30], leads to 

appealing properties. From a genetic point of view, we show that the SNP squared scores 

provided by the between-population PCA are estimators of FST. They may further be 

interpreted with respect to the corresponding population substructure to identify putative 

footprints of selection [31]. For the sake of an illustration, we finally analyzed a publicly 

available and well studied human haplotype data set. 

Results 
Haplotype-based PCA 
A detailed presentation of PCA can be found, for instance, in [32] and we just present herein 

essential features of our method when applied to SNP haplotypes. Let X={xij} be a matrix 
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with n rows (haplotypes) and p columns (SNPs). Since only biallelic SNPs are considered, 

each entry of X is a binary indicator variable corresponding to one of the two alleles such as:  

 
1 if the allele of SNP  of the haplotype  is the first allele

=0 if the allele of SNP  of the haplotype  is the second allele
                                                         

ij

j i
x j i

=





 

, Standardization of X leads to the matrix 
m( )

[ ]
sd( )

j
ij

ij j

x x
z

x
 −

= =  
  

Z where m(xj) and sd(xj)=

(1 )j jp p−  (where pj is the allele frequency of SNP j) are the mean and the standard 

deviation  for the j-th column of X. A normed PCA is a PCA on standardized variables (i.e. 

Z). 

It is worth noting that, with these notations, the LD measure ∆ between two SNPs j and k is 

equal to the correlation between the jth and kth columns of X. Hence, the (symetric) matrix 

Z’Z/n corresponds to the LD matrix based on the ∆ measure. [18].  

According to the duality diagram theory [20], the PCA of Z is summarized by the triplet <Z, 

Q, D>, where Q =Ip and D = In /n are metric matrices weighting the columns and the rows of 

Z, respectively. The PCA is performed indifferently by the eigendecomposition of either 

Z’DZQ=Z’Z/n (representation of individuals (haplotypes) in the SNPs hyperspace) or its 

transpose ZQZ’D=ZZ’/n (representation of variables (SNPs) in the individual hyperspace). 

Both decompositions produce the same set of eigenvalues, the number of which equals the 

rank of Z’Z/n, say r. The eigendecomposition of Z’Z/n results in a set of eigenvectors called 

principal components, which are linear combinations of the original SNPs. Conversely, the 

eigendecomposition of ZZ’/n results in a set of eigenvectors called principal axes, which are 

linear combinations of the original haplotypes. Transition formulae enable to move easily 

from one set of eigenvectors to the other set. The scores of a haplotype is the projection of the 

corresponding X row onto the principal components. Correspondingly, the scores of a SNP is 

the projection of the corresponding X column onto the principal axes. Let cij be the score of 
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the ith SNP for the jth axis. Some properties of these scores are worth mentioning. First, scores 

are standardized in such a way that 2

1

p

ij j
i

c λ
=

=∑ , where λj is the jth eigenvalue and 

2

1
var( )

r
i

ij
j

c z
=

=∑  

Note that in a normed PCA, 2

1
1

r

ij
j

c
=

=∑
 
by construction. Second, the score cij is also the 

correlation of the ith SNP with the jth axis. Consequently, SNPs whose scores are highly 

correlated with some axis (absolute value of the scores close to 1) are correlated between each 

other [33]. Finally, the total variance (or inertia) I is equal to the sum of the eigenvalues and 

thus to the sum of SNP squared scores. In addition, owing to the standardization, the diagonal 

elements of Z’Z/n are equal to 1 (see above), and thus the eigenvalues sum to the number of 

SNPs p (the trace of Z’Z/n). The total variance is thus equal to the number of SNPs. 

In practice, the two types of eigendecomposition mentioned above correspond to the 

maximisation of two different statistical criteria. First, the analysis maximises the variance of 

the haplotypes onto the principal axes which is the main reason generally advocated for using 

PCA since it the most efficient way to summarize the information of individuals onto some 

synthetic variables. The second aspect is less mentioned: PCA maximizes the sum of the 

squared correlations between principal components and SNPs [30].  

Moreover, because SNPs are biallelic, i.e. dichotomous factors, PCA on the table Z is also the 

multiple correspondence analysis (MCA) of the whole set of SNPs [30]. Principles of MCA 

date back to Fisher [34], and MCA is the reference multivariate method for analyzing 

multidimensional contingency tables [35, 36]. This equivalence justifies performing PCA on 

the correlation matrix, or, equivalently to use the standardization by (1 )j jp p−  
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Interpretation of SNP scores 
In PCA, the score of a SNP for an axis is the correlation of the SNP with this axis. In a MCA, 

the squared score of a SNP for an axis ranges from 0 to 1. It is a correlation ratio 

corresponding to the percentage of variance of the haplotypes scores explained by the SNP 

allele. Correlation ratio helps to investigate the link between the SNP and the quantitative 

score of haplotypes generated by MCA. The higher the correlation ratio, the more the 

different haplotypes are separated. Let’s consider the one-factor linear model linking the 

haplotype scores on the jth axis to the alleles of the ith SNP: [ ] [ ]j iy SNP eµ= + + . The 

corresponding squared SNP score 2
ijc is equal to the R2 of this model. It can be considered as a 

typological value (TV), since it quantifies the extent to which this SNP contributes to the 

corresponding typology. 

Between-group and within-group PCA.  
The use of between-group and within-group analyses [37-40] enables to take into account, in 

a very simple way, an a priori structure among individuals (here haplotypes). Let’s consider 

that the n haplotypes are clustered into g groups (e.g. populations). From Z, we build Z[g], the 

matrix with p columns and g rows of per-group means of Z. An entry of Z[g] is ijz+ , the mean 

of the jth SNP for the kth group. 

Rows of Z[g] are weighted by their group relative frequencies, i.e. the numbers of haplotypes 

per group divided by the total number of haplotypes. The between-group PCA is summarized 

by the triplet < Z[g],Ip,Dg>, where Dg is the diagonal matrix of the g groups relative 

frequencies. Its aim is to highlight the differences between groups, and row scores maximize 

the between-group variance. The number of eigenvalues rb resulting from the between-group 

PCA is generally equal to g-1.  

Within-group analyses aim at eliminating the effect of the structuring and are thus 

complementary to between-group analyses. They focused on the table Z- of the residuals 
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obtained after scaling the data by the per-group means. The within-group PCA is summarized 

by the triplet <Z-, Ip,In/n>. As a result, the within-group variability may be assessed by the 

total variance of individual scores, summed over all the within-group principal components. 

Accordingly, the total variance I can be partitioned in a between-group variance, Ib, equal to 

the sum of eigenvalues of the between-groups PCA, and in a within-group variance, Iw, equal 

to the sum of eigenvalues of the within-group PCA following I=Ib+Iw.  

Similarly, the ratio of the between-group variance to the total variance Ib / I measures the 

contribution (in term of variance) in the differentiation of individuals of the structuring into 

groups. Moreover, this ratio is equal to the methods of moments estimator of the FST from the 

model proposed by [41, 42] as shown below. 

FST and between-group variance. 
 

Let pij represent the (observed) allele frequency of the reference allele at SNP i in population j. 

L and P denotes respectively the total number of SNPs and populations.. Following the model 

proposed by [42], the method-of-moments estimator of the population-specific FST for 

population j is defined as 𝐹𝑆𝑇
𝚥� = 1

𝐿
∑ (𝑝𝑖𝑗−𝑝𝑖.)2

𝑝𝑖(1−𝑝𝑖)
𝐿
𝑖=1  where 𝑝𝑖. = 1

𝑃
∑ 𝑝𝑖𝑗𝑃
𝑗=1 . Similarly, the quantity 

𝐹𝑆𝑇𝚤� = 1
𝑃
∑ (𝑝𝑖𝑗−𝑝𝑖.)2

𝑝𝑖(1−𝑝𝑖)
𝑃
𝑗=1  might be interpreted as a SNP-specific FST for SNP i (e.g. [41]. Finally 

a natural estimator of the global FST (across populations and SNPs) is given by [41, 42]): 

𝐹𝑆𝑇
� = 1

𝑃
1
𝐿
∑ ∑ (𝑝𝑖𝑗−𝑝𝑖.)2

𝑝𝑖(1−𝑝𝑖)
𝑃
𝑗=1 =𝐿

𝑖=1
1
𝑃
∑ 𝐹𝑆𝑇

𝚥�𝑃
𝑗=1 = 1

𝐿
∑ 𝐹𝑆𝑇𝚤�𝐿
𝑖=1 .  

A PCA performed on a single SNP i results in a straight line along which the observations 

(haplotypes) are located. More precisely, haplotypes have only two possible coordinates, 

according to their allele at SNP i. Since we are considering the ratio of coordinates variance, 

standardization of these coordinates doesn’t matter. So, let 1 be the coordinate of the minor 

allele and 0 the coordinate of the alternative allele. By definition the between-group variance 
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IB is equal to  𝐼𝐵 = 1
𝑃
∑ (𝑝𝑖𝑗 − 𝑝𝑖.)2𝑃
𝑗=1  and the total variance I is equal to the variance of the 

two coordinates weighted by the proportion of corresponding haplotypes: 

𝐼 = 𝑝𝑖.(1 − 𝑝𝑖.)2 + (1 − 𝑝𝑖.)𝑝𝑖.2 = 𝑝𝑖.(1 − 𝑝𝑖.).  

Thus, the ratio of the between groups variance to the total variance is equal to the SNP-

specific FST defined above [43]: 

 

𝐼𝐵
𝐼

=
1
𝑃
�

(𝑝𝑖𝑗 − 𝑝𝑖.)2

𝑝𝑖.(1 − 𝑝𝑖.)

𝑝

𝑗=1

= 𝐹�𝑆𝑇𝑖 

 

 In addition if cb
ij is the score of the ith SNP for the jth axis of the between group PCA, and FSTi 

the corresponding SNP-specific FST, according to (2), the between-groups variance for the ith 

SNP is equal to the sum of its squared scores across all the between-groups axes, ∑ 𝑐𝑖𝑗𝑏2𝑟
𝑗=1  

while the total variance equals 1. Then we get, for the ith SNP: 

𝐹𝑆𝑇𝑖 = �𝑐𝑖𝑗𝑏2
𝑟

𝑗=1

 

 

The average across SNPs of the FST is a natural estimator of the overall FST (e.g. [41, 42] and 

it is equal to the ratio of the total between-groups variance to the total variance, thus FST = 

Ib/I. 

Let’s recall that the total variance equals p, the number of SNPs. Then we get: 

  FST = Ib/p 

A similar result has been found in the case of two populations by [44]. 

Interestingly, only per-group allele frequencies and relative frequencies are needed to 

compute between-group PCA, FSTi and FST. 
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Applications to a human dataset. 
To illustrate these different interpretations of PCA results, we analyzed human chromosome 2 

(HSA2) 116,430 SNPs haplotypes for three populations: CEU (Utah residents with ancestry 

from northern and western Europe), YRI (Yoruba in Ibadan, Nigeria) and CHB+JPT (Han 

Chinese in Beijing, China and Japanese in Tokyo, Japan). The total variance equals 116,053, 

i.e. the number of polymorphic SNPs. The first and second between PCA eigenvalues are 

equal to 8,004 (7 % of the total variance) and 3,881 (3% of the total variance), respectively 

while the within-population PCA eigenvalues are varying from 31 to 315. The resulting 

global FST equals 0.1024, computed as described above, and is close to those previously 

reported using the Phase 1 HapMap data [45] 

The within population variability were equal to 137,163, 104,219 and 82,891 for YRI, CEU 

and JPT+CHB, respectively. These results are also consistent with [7] which reported that 

heterozygosity is the highest in subsaharian Africa, intermediate in Europa and the smallest in 

East Asia. 

The factorial map of the between-populations analysis is given in Figure S1. Since there are 

three populations, two axes are sufficient to summarize the total variation between the three 

populations. The first axis isolates YRI population from CEU and CHB+JPT, while the 

second axis isolates CEU. Corresponding spatial autocorrelations of SNPs correlation ratio 

are equal to 0.27 and 0.31, respectively. Plots of SNP TVs for axes 1 and 2 and their SNP-

specific FST (corresponding to the sum of TVs of the two axes) are given in Supplementary 

Figures 2. However, to better assess regions with large amount of SNPs displaying high TVs, 

we adopted an empirical smoothing approach inspired from [45] which consisted in averaging 

TVs (and SNP-specific FST) over 3-Mb sliding windows. As a matter of expedience, for each 

axis (and for FST), two thresholds were considered to identify outlying smoothed score, 

respectively 2.32 and 3.09 (empirical) standard deviations from the (empirical) average. If the 

score distributions were Gaussian under the null hypothesis of neutrality, these thresholds 
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would correspond to standard 0.01 and 0.001 p-values. However, they might be less 

conservative since the observed distribution had a fatter tail than a Gaussian distribution as a 

probable result from the biased choice of the chromosome in which several footprints of 

selection have already been detected (see below). From a genome-wide perspective (beyond 

the scope of this illustrative example), this might be less of concern. 

The three different smoothed scores are plotted in Figure 1 and significant peak positions are 

detailed in Table 1. For the first axis which separated YRI from the two others populations, 

two significant peaks (with a smoothed score greater than 3.09 standard deviations above the 

mean) were observed at positions 73.3 Mb and 198.2 Mb. For the second axis which 

separated CEU from the two others populations, four significant peaks were observed at 

positions 16.754 Mb, 109.058 Mb, 135.962 Mb and 153.419 Mb. Finally, when considering 

the smoothed score based on the sum of TV for the two axes (i.e. FST), only one (at position 

73.3 Mb) of the previous peaks was found as being still significant. Overall, these results are 

consistent with previous published studies. For instance, Sabeti and collaborators [46] 

reported four regions on HSA2 as subjected to selection (around positions 72.5 Mb, 108.6 

Mb, 136.0 Mb and 177.7 Mb when converted to hg18 genome assembly positions) based on 

the XP-EHH test in JPT+CHB, JPT+CHB, CEU and both CEU and JPT+CHB populations 

respectively. Hence three of these positions were close (less then 500 kb) or confounded with 

peak identified on second axis although the first two signals were found significant in 

JPT+CHB population in this latter study. Interestingly, the third position (around 136.0 Mb) 

within the ZRANDB3 gene (Table 1) is close to the LCT gene (less than 300 kb) which has 

been extensively reported as a putative target for natural selection and within which an allele 

have been found at high frequency within Europe, absent in the Yoruba population and almost 

absent in East Asia [47]. Similarly, the second peak observed on Axis 2 is close (less than 20 

kb) to EDAR which was previously identified as the putative target of a strong selective 
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sweep in East Asians [48]. Finally, three additional peaks were identified in our study and 

have not been reported elsewhere. They are located close or within RFTN2, FAM49A and 

ARL6IP6 genes. 

 

 

 

Discussion  
PCA is primarily an exploratory technique and it is now almost exclusively based upon 

individual-level rather than population-level analyses. However, prior knowledge about the 

structuring of the populations under study can be explicitly taken into account by partitioning 

the ordinary PCA in sub-analyses. Interestingly, a between-population analysis delivers 

standard estimates of FST (either population-specific or SNP specific). This is, for instance, of 

particular interest in the case of highly structured populations such as cattle [16]. In our 

application, confirming previous results, the first PC isolates the African population from the 

two others, while the second PC contrasts Europeans with Africans and Asians (Figure S1). 

Within-group PCA enabled to assess within-population diversity and to compare the different 

populations according to this criterion. Our results were in agreement with previous ones that 

showed more genetic diversity in African populations. 

Because of PCA flexibility, such an approach might also be extended to several other factors 

and a multi-factorial or nested stratification (e.g populations nested in continents, or 

population crossed with some disease sensibility) may be accounted for by a modification of 

PCA involving the so-called “instrumental variables” [32, 40]. Such analyses should enable to 

rule out known genetic structuring by adjusting for these factors or alternatively to quantify 

the TV of SNPs according to each of them. 
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For instance, in this paper, we investigated some features of a normed PCA applied to SNP 

haplotypes for quantifying the typological value of a SNP regarding a principal component. 

Because TV is a correlation ratio, quantifying the reduction of variance of haplotypes scores 

due to the knowledge/ascertainment of the SNP allelic form, a small value indicates that the 

marker does not contribute to the building of the component. Conversely, a value close to 1 

indicates that the typology is completely built by the SNP and might thus be related to 

putative signal of selection [29]. Moreover, TVs are also FST, that has been advocated to 

identify regions of the genome that have been the target of selection [31, 45, 49, 50]. More 

specifically, our approach might be regarded as equivalent to recently proposed model-based 

approaches aiming at identifying population-specific effect of SNP contribution to overall 

differentiation while taking into account hierarchical structure among populations under study 

[51] although PCA remains by far more computational efficient.  

In addition, TVs may help to analyze how the position of markers along a chromosome 

impacts their contributions to the genetic diversity. Therefore, plots of the TVs with respect to 

the position of the underlying SNP along the chromosomes enable to easily spot candidate 

regions for footprints of selection which are expected to display several SNPs with high 

typological values. This was exemplified by our application on HSA2 haplotypes where 

several footprints of selection had already been reported [46, 48]. Note, that in order to take 

into account spatial dependency among SNPs along the haplotypes TVs we adopted an 

empirical smoothing approach [45] which consisted in averaging scores over 3-Mb sliding 

windows. Due to the properties of the scores, model-based strategies might be more adapted 

and more rigorous to identify such outlier regions and to propose better significance 

thresholds. To that regard, analyses of SNP scores with autoregressive models represent for 

instance promising alternatives as recently illustrated under a Bayesian framework by Guo 

and collaborators [52] who investigated Conditionally Autoregressive models (CAR) models 
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to identify local effect on SNP differentiation. Finally, relating TV to their underlying axe 

helps to better refine the putative origin of the signal and gives a more precise picture 

compared to the one obtained when considering SNP-specific FST across populations (see 

Figure 1).  

Conclusions  
Since Cavalli-Sforza advocated using PCA to decipher population structuring of genetic 

diversity [2], this approach and related factorial methods have been proved useful to address 

other issues such as correcting for stratification in genome-wide studies [53], assessing the TV 

of markers [4, 27], addressing the spatial structuring of genetic diversity [16, 54, 55], 

identifying small subsets of informative SNPs [25, 26], simultaneous accounting for genetic 

and morphologic data [56], and discriminating among populations [29].  

The main advantages of PCA are its versatility and its computational efficiency allowing to 

deal with large data sets currently produced [3].We hope that the enhanced interpretation of 

the PCA results when dealing with biallelic SNPs will give another argument for using it. 

   

 

 

Material and Methods  
Haplotype Data 
Human chromosome 2 haplotype data were downloaded from the HAPMAP project website 

(http://hapmap.ncbi.nlm.nih.gov/downloads/phasing/2009-02_phaseIII/) wheremore details 

can be found. Respectively, 231 CEU, 234 YRI and 339 JPT+CHB haplotypes were 

considered in the analysis. Each haplotype consisted of 116,430 SNPs.  
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Analyses 
Within and between populations PCA were performed with the R software [57] and the R 

package ade4 (more particularly dudi.pca, between and within functions) [58].  
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Figures 
 
 

 

Figure 1: Plots against HSA2 chromosome position (in Mb on the hg18 assembly) of the 
smoothed TV for axis 1 (A) and axis 2 (B) and the smoothed SNP-specific FST (C) 
corresponding to the sum of the two previous TVs. Vertical dashed bar showed the position of 
the four positions identified in the study by Sabeti and collaborators (Sabeti et al., 2007). For 
each plot, the two horizontal dashed lines represent the two thresholds (2.32 and 3.09 
empirical standard deviation above the empirical mean) 
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Tables 
Table 1 – Details of the Footprints of selection identified on HSA2. 

Axis 
Peak Position in Mb (hg18 

assembly) 

Peak Score Value (sd 

above the mean) 

Genes Closest to the peak 

(Position) 

1 73.274 0.1238 (4.27) SMYD5 (73.295-73.308) 

1 198.217 0.1096 (3.16 RFTN2 (198.144-198.249) 

2 16.754 0.0706 (4.38) FAM49A (16.597-16.711) 

2 109.058 0.0629 (3.47) 
SH3RF3 (109.112-109.619) 

EDAR (108.877-108.972) 

2 135.962 0.0624 (3.42) 
ZRANDB3 (135.674-136.005) 

LCT (136.261-136.311) 

2 153.419 0.0627 (3.45) ARL6IP6 (153.283-153.326) 

1+2 

(FST) 
73.311 0.1696 (4.51) SMYD5 (73.295-73.308) 
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Supplementary Figures 
 

Supplementary Figure S1 
 

 

Figure S1: PCA based on 116,430 SNPs mapping to HSA2 and genotyped in three human 
populations. Map of the between-populations PCA. This map shows the two PCs of the 
between-populations PCA. ceu denotes European populations, yri Yoruba population and 
jpt+chb Asian populations. 
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Additional file 2 – Supplementary Figure S2 
 

 

Figure S2: Plots of the typological values and FST for each SNP along the human 
chromosome 2. The numbers on the x axis indicate the location of the SNP (in Mb). 4 vertical 
red lines are drawn indicating the region candidates for natural selection found by Sabeti et al 
(2007). We list the name of the gene, (when it exists) that is nearest to each of these regions. 
a. Typological values for the first between-populations PC; b. Typological values for the 
second between-populations PC; c. Global FST. 
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Additional file 3 – Supplementary Figure S3 
 

 

Figure S3: Observed distributions of the smoothed TV for axis 1 (A) and axis 2 (B) and the 
smoothed SNP-specific FST (C) corresponding to the sum of the two previous TVs. The red 
curve is the Gaussian distribution with mean and standard deviation equal to the empirical 
ones. 
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