## BMC Proceedings

Proceedings
Open Access
A comparative study of three methods for detecting association of quantitative traits in samples of related subjects Aude Saint Pierre*, Zulma Vitezica and Maria Martinez

Address: INSERM, U.563, University Paul-Sabatier, CPTP, Toulouse F-31300, France
E-mail: Aude Saint Pierre* - Aude.saint-pierre@inserm.fr; Zulma Vitezica - Zulma.vitezica@inserm.fr;
Maria Martinez - Maria.martinez@inserm.fr
*Corresponding author

## Association Studies in Families

Tests for genetic association can use family data when relatedness between individuals is modeled appropriately (e.g. George and Elston, 1987)

## Linear Mixed (polygenic) Model for Association

Vector of quantitative phenotype $Y$

$$
\gamma=\mu+b g+G+e
$$

g: genotype indicator vector gi in $\{0,1,2\}$
$b:\left(b_{b}, b_{w}\right)$ additive fixed effect of the allele
$>$ Similarities between individuals
G: random polygenic effect $\sim \operatorname{MVN}\left(0, \Phi \sigma_{G}{ }^{2}\right)$
$e$ : random residual effect $\sim M V N\left(0, I \sigma_{e}{ }^{2}\right)$

- Maximum Likelihood (ML)
- Software packages (SOLAR,MERLIN, ...)


## Controlling for Stratification

$>$ If stratum were known...

- For each individual genotype ( $\mathrm{g}_{\mathrm{ij}}$ )
- Average number of alleles in a strata $\left(b_{i j}\right)$
- Adjust for stratum differences $\left(w_{i j}=g_{i j}-b_{i j}\right)$

$$
Y_{i j}=\mu+\hat{\beta}_{b} b_{j i}+\hat{\beta}_{w} w_{i j}
$$

>How to define stratum then?
Use family data to estimate $\mathrm{b}_{\mathrm{ij}}$

## Extended Families (Fi)

$$
b_{i j}=\left\{\begin{array}{cc}
\frac{b_{i F_{j}}+b_{i M_{j}}}{2} & \text { average of parental controls } \\
\sum_{k} \frac{g_{i k}}{n_{s i b s}} & \text { average of sibling genotypes } \\
g_{i j} & \text { self - genotype } \\
\text { undefined } & \text { otherwise }
\end{array}\right.
$$

Non-founders, $\mathrm{w}_{\mathrm{ij}}=\mathrm{g}_{\mathrm{ij}}-\mathrm{b}_{\mathrm{ij}}$

## Tests of association

Mixed model ( $\mu, b_{b}, b_{w} \sigma_{G}^{2}, \sigma_{e}^{2}$ )

## Orthogonal components

$$
\underline{b}_{\mathrm{b}} \quad \underline{\mathrm{~b}}_{\mathrm{w}}
$$



## Transmission Disequilibrium Test -- Effective sample size

$>$ Discards data on the relatives not fulfilling either one of the 2 conditions
(1) Both parents genotyped and at least one of them is heterozygote
(2) They have at least one sibling with a different genotype
$>$ Focus on within family component of association


## To Compare Methods for association analysis

 for quantitative traits in related individuals- Type I error \& Power:
- Quantitative Transmission-Desequilibrium Test (QTDT)
- Quantitative Trait Linkage Disequilibrium Test (QTLD)
- Measured Genotype (MG)
$>$ These approaches differ in the amount and type of marker information used for testing association.


## Pedigree Data - Framingham Heart Study

704 pedigrees with $\geq 2$ non-founders individuals with available phenotype \& genotype data (out of 12,407 subjects: 6,009 have phenotype data; ~48\% have genotype data)

SNP Data: Affy GeneChip Human Mapping 500K Array. QC steps:
(1) Exclude SNPs: call rate $<95 \%$; monomorphic or low MAF ( $1 \%$ ) : significant ( $p$-value< $10^{-6}$ ) departure to HardyWeinberg equilibrium (using unrelated subjects); Mendelian consistency checked with Pedstat [Wigginton \& Abecasis 2005]
(2) DNA samples with $<95 \%$ call rate: all genotypes zeroed out.

## Simulated traits

## Heritability (\%) <br> HDL: 54 <br> TG: 38



Figure 1. GAW16 Problem 3 simulation diagram.

200 replicates of FHS pedigree sample

## Characteristics of the tested (causative and non-causative) SNPs

|  |  |  |  |  |  | $h^{2} \mathbf{g}$ |  | $\begin{gathered} \text { No Ind. } \\ \text { with } \\ \text { genotype } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Chr | Gene | Pos (bp) | SNP | MAF \% | D' (with causal)* | HDL | TG |  |
| 7 | None | 24734008 | rs2521760 | 12.7 | - | - | - | 5826 |
| 8 | alpha4 | 19794163 | rs17091651 | 10.0 | 0.04 (alpha4) | - | - | 5945 |
|  |  | 19868351 | rs3200218 | 21.7 |  | 0.3\% | 0.4\% | 5854 |
|  |  | 19943326 | rs4244457 | 32.9 | 0.04 (alpha4) | - | - | 5962 |
| 19 | $\begin{gathered} \text { alpha2 } \\ \text { delta1 } \end{gathered}$ | 46010146 | rs11083567 | 18.2 | 0.07 (alpha2) - 0.03 (delta1) | - | - | 5951 |
|  |  | 46089501 | rs8103444 | 24.4 | 0.003 (delta1) | 0.2\% | - | 5995 |
|  |  | 46210613 | rs8192719 | 24.9 | 0.003 (alpha2) | 0.3\% | 0.3\% | 5995 |
|  |  | 46335684 | rs1631931 | 13.5 | 0.01 (alpha2) - 0.03 (delta1) | - | - | 5990 |
| * pairwise linkage disequilibrium coefficient (D/Dmax) between the functional variant (symbol) and the SNPs in its vicinity (<200kb) |  |  |  |  |  |  |  |  |

## Type I error -

## Mean $\chi^{2}$ statistics $\left(\mu-\chi^{2}\right)$ and rate of significant Association results

|  |  |  |  | $\mu-\chi^{2}$ (sd) |  |  | $\mathrm{P}=5 \%$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Chr | Gene | SNP | Trait | QTDT | MG | MG_S | QTDT | MG_S |
| A- No Linkage \& No Association |  |  |  |  |  |  |  |  |
| 7 | none | rs2521760 | HDL | 0.48 (0.62) | 0.73 (0.85) | 0.72 (0.86) | 0\% | 0\% |
|  |  |  | TG | 0.86 (1.10) | 0.64 (0.70) | 0.60 (0.69) | 3\% | 1\% |
|  |  |  | TG_Diet | 0.87 (1.00) | 0.62 (0.64) | 0.56 (0.63) | 4\% | 0\% |
|  |  |  | TG_Rob | 0.99 (1.28) | 0.48 (0.63) | 0.44 (0.62) | 4\% | 0\% |
| B- Linkage \& No association |  |  |  |  |  |  |  |  |
| 8 | alpha4 | rs4244457 | HDL | 1.50 (1.79) | 0.63 (0.79) | 0.51 (0.75) | 6\% | 1\% |
|  |  |  | TG | 1.76 (1.86) | 0.65 (1.13) | 0.61 (1.12) | 14\% | 3\% |
|  |  |  | TG_Rob | 1.52 (1.74) | 0.52 (0.98) | 0.49 (0.99) | 9\% | 3\% |
| 19 | alpha2 <br> /delta1 | rs11083567 | HDL | 0.85 (0.97) | 0.40 (0.51) | 0.37 (0.52) | 2\% | 0\% |
| 19 | delta1 | rs 1631931 | HDL | 1.86 (2.02) | 1.08 (1.24) | 0.99 (1.19) | 12\% | 1\% |
|  |  |  | TG | 0.93 (1.35) | 0.62 (0.79) | 0.61 (0.79) | 6\% | 1\% |
|  |  |  | TG_Rob | 0.97 (1.29) | 0.75 (0.93) | 0.74 (0.93) | 2\% | 1\% |

Empirical error rates < nominal values, except for QTDT (2 linked SNPS)
Accounting for pop. Stratification (MG_S) -> decreased mean test statistics Similar error rates with/out covariate (Diet)
Departure from normality (TG): slight impact on error rates

## HDL - Power by P-value



## TG - Power by P-value

■ QTDT ■MG|Strat


## SNP is functional -- Mean $\chi^{2}$ statistics $\left(\mu-\chi^{2}\right)$

|  |  |  | $\mu-\chi^{2}$ (sd) |  |  | No Ind. with genotype \& phenotype data | $\begin{aligned} & \text { Ne(QTDT)/ } \\ & \mathbf{N} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol | SNP | Trait | QTDT | MG | MG_S |  |  |
| alpha4 | rs3200218 | HDL | 17.88 (6.28) | 30.96 (8.24) | 27.88 (11.55) | 5854 | 32\% |
| alpha2 | rs8103444 | HDL | 1.38 (1.35) | 9.56 (4.29) | 8.62 (5.05) | 5995 | 37\% |
| delta1 | rs8192719 | HDL | 7.13 (3.8) | 17 (5.79) | 16.9 (6) | 5995 | 37\% |
| alpha4 | rs3200218 | TG | 2.21 (2.46) | 10.93 (5.54) | 9.92 (6.31) | 5854 | 32\% |
|  |  | TG_Rob | 3.35 (3.16) | 13.04 (5.85) | 12.67 (6.34) |  |  |
| deltal | rs8192719 | TG | 3.11 (2.87) | 12.91 (5.28) | 12.13 (6.16) |  |  |
|  |  | TG_Rob | 5.15 (3.58) | 18.21 (5.89) | 17.46 (7.04) | 5995 | 37\% |

$>$ Power is lowest for

- Functional SNP with smallest effects (alpha2)
- Less heritable trait (TG)
- Non-normal trait (Untransformed vs Transformed TG)
$>$ Mean chi-square QTDT is 1.6 to 6.2 times lower than that of MG_S Consistent with the amount of data used (Ne)


## Extensions: Whole-genome association study ?

$>$ MG adjusted for pop stratification

- SNP by SNP (candidate gene study)
- Genomic kinship (Aulchenko et al.,); PCA in family data?


## Extensions: Can association explain linkage ?

$>$ Major gene, polygenes, environment

$$
\Omega_{\mathrm{ij}}= \begin{cases}\sigma_{a}^{2}+\sigma_{\mathrm{g}}^{2}+\sigma_{\mathrm{e}}^{2} & \mathrm{i}=\mathrm{j} \\ \left.\mathbf{2} \varphi_{\text {marker }(\mathrm{ij}}\right)_{\mathrm{a}}^{2}+2 \phi_{\mathrm{ij}} \sigma_{\mathrm{g}}^{2}+\sigma_{\mathrm{e}}^{2} & \mathrm{i} \neq \mathrm{j}\end{cases}
$$

- Fine-Mapping:

Are there other associated alleles to be found ?

